Lightweight Multiscale Neural Architecture Search With Spectral–Spatial Attention for Hyperspectral Image Classification

计算机科学 高光谱成像 人工智能 上下文图像分类 模式识别(心理学) 平滑的 人工神经网络 像素 过度拟合 稳健性(进化) 光谱空间 计算机视觉 图像(数学) 数学 基因 生物化学 化学 纯数学
作者
Chunhong Cao,Han Xiang,Wei Song,Hongbo Yi,Fen Xiao,Xieping Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:12
标识
DOI:10.1109/tgrs.2023.3253247
摘要

Hyperspectral image (HSI) classification based on neural architecture search (NAS) is a currently attractive frontier as it not only automatically searches complex neural network architecture, but also avoids professional knowledge and experience design, and alleviates the lacking of generalization ability as well when dealing with a new classification task. However, the existing HSI classification based on NAS has some drawbacks: 1) A huge number of training parameters and high calculations are inductive to over-fitting and high complexity. 2) Efficient operators are lacking in the search space which can distinguish spatial locations and spectral features in different bands. Furthermore, as the category samples in HSI data show a serious long-tail distribution phenomenon, HSI classification remains challenging. To address these issues, we propose a lightweight HSI classification model LMSS-NAS integrating multi-scale spectral-spatial attention. The main work includes three-fold: 1) In order to reduce the number of model parameters and promote spectral-spatial feature fusion, a new lightweight efficient search space is designed, which consists of three equivalent lightweight convolution operators with multiple receptive fields. 2) To fully use the spectral-spatial correlation of HSI, a cube-to-pixel classification framework is designed to mine the local spatial and spectral context. 3) Focal loss and label smoothing loss in computer vision tasks are jointly migrated to LMSS-NAS to improve the unbalanced samples' classification and model robustness. Experimental results on four public hyperspectral data sets show that the proposed method can achieve competitive classification performance as well as low computational cost. Code is available at: https://github.com/xh-captain/LMSS-NAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助小丸子采纳,获得10
1秒前
彭于晏应助石一采纳,获得10
2秒前
chen发布了新的文献求助10
3秒前
3秒前
852应助66668888采纳,获得30
3秒前
慢慢完成签到 ,获得积分10
4秒前
彭于晏应助蔬菜狗狗采纳,获得10
4秒前
5秒前
LC发布了新的文献求助10
5秒前
Joy发布了新的文献求助10
5秒前
7秒前
香蕉觅云应助Dummers采纳,获得10
7秒前
傻傻的修洁完成签到 ,获得积分10
7秒前
刘xiansheng完成签到,获得积分20
8秒前
8秒前
酷波er应助娇气的万恶采纳,获得10
8秒前
8秒前
8秒前
9秒前
ZZY发布了新的文献求助10
9秒前
10秒前
充电宝应助XYN1采纳,获得10
10秒前
万能图书馆应助一天采纳,获得10
11秒前
啦啦啦完成签到,获得积分20
11秒前
12秒前
12秒前
ying发布了新的文献求助10
12秒前
路遥知马力完成签到 ,获得积分10
12秒前
waaasa发布了新的文献求助10
13秒前
13秒前
乐乐应助windli采纳,获得10
13秒前
13秒前
合适尔槐完成签到 ,获得积分10
13秒前
wanci应助上帝掷骰子采纳,获得10
14秒前
合适如音发布了新的文献求助10
14秒前
小马发布了新的文献求助10
14秒前
15秒前
ZKcrane完成签到,获得积分10
15秒前
15秒前
取名真费劲完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794290
求助须知:如何正确求助?哪些是违规求助? 3339195
关于积分的说明 10294538
捐赠科研通 3055817
什么是DOI,文献DOI怎么找? 1676819
邀请新用户注册赠送积分活动 804770
科研通“疑难数据库(出版商)”最低求助积分说明 762149