Forecasting Energy Demand and CO2 Emissions for Crude Extraction and Separation Using Machine Learning

计算机科学 能源消耗 软件 工艺工程 环境科学 工程类 电气工程 程序设计语言
作者
Muhammad Abbas,Omar Naeem
标识
DOI:10.2523/iptc-22801-ms
摘要

Abstract With the drop of oil reservoirs’ natural pressure, and injection of higher amounts of water, predicting energy consumption required to extract multiphase hydrocarbon product, and separate it into crude, gas, and water has become a challenging and more dynamic problem. This paper discusses a detailed technique to forecast energy demand for water injection and Gas-Oil Separation Plant (GOSP). Key elements of the method include identifying the energy, products, and feed streams, along with other parameters impacting the energy demand. The relationships among all independent and dependent variables are identified, along with the consideration of ambient conditions and equipment operating efficiencies. Machine Learning (ML) algorithms are then applied, using available industry software, to build and improve these relationships using the historical data. The best-fit forecast models, also called champion models, are selected that provide the least variance from actual data. These models can be updated, using the software, as the new data is received and variance between predicted and actual energy increases. The forecasted energy demand is converted to CO2 emissions using the conversion factors for fuel gas and power. The forecasting results and underlying process can be converted into dashboards for visualization and utilization by the users of operating plants. The method described in the paper is novel and first of a kind for predicting energy demand and CO2 emissions for a GOSP considering increases in water cut and water-injection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Drake完成签到,获得积分10
刚刚
1秒前
2秒前
化龙完成签到,获得积分10
5秒前
ally完成签到,获得积分10
6秒前
赵润泽完成签到 ,获得积分10
6秒前
李嘉图的栗子完成签到,获得积分10
6秒前
Beatrice发布了新的文献求助10
7秒前
大力的诗蕾完成签到 ,获得积分10
8秒前
月月完成签到,获得积分20
9秒前
chenjzhuc应助铅笔采纳,获得10
9秒前
冯11完成签到,获得积分10
10秒前
11秒前
13秒前
丘比特应助Beatrice采纳,获得10
14秒前
vkl完成签到 ,获得积分10
16秒前
冯大夫发布了新的文献求助10
16秒前
计算小凡完成签到 ,获得积分10
18秒前
niania完成签到 ,获得积分10
19秒前
tlh完成签到 ,获得积分10
20秒前
好的发布了新的文献求助30
20秒前
21秒前
九号球完成签到,获得积分10
22秒前
wjswift完成签到,获得积分10
25秒前
朴实灵波完成签到,获得积分10
25秒前
28秒前
28秒前
搜集达人应助典雅的俊驰采纳,获得10
30秒前
烟花应助加百莉采纳,获得10
30秒前
烟花应助铅笔采纳,获得10
33秒前
菠萝披萨发布了新的文献求助10
33秒前
悟空完成签到,获得积分10
34秒前
章章完成签到,获得积分10
35秒前
yyy完成签到,获得积分10
37秒前
心碎小文完成签到,获得积分20
37秒前
38秒前
小糊涂仙儿完成签到 ,获得积分10
41秒前
立青完成签到 ,获得积分10
42秒前
加百莉发布了新的文献求助10
42秒前
西瓜霜完成签到 ,获得积分10
43秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Les dinosaures (Carnosaures, Allosauridés, Sauropodes, Cétosauridés) du Jurassique Moyen de Cerro Cóndor (Chubut, Argentina). Annales de Paléontologie (Vert.-Invert.) 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825290
求助须知:如何正确求助?哪些是违规求助? 3367618
关于积分的说明 10446647
捐赠科研通 3086928
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816756
科研通“疑难数据库(出版商)”最低求助积分说明 769937