Identification of Vascular Cognitive Impairment in Adult Moyamoya Disease via Integrated Graph Convolutional Network

可解释性 计算机科学 平滑的 人工智能 图形 神经影像学 认知障碍 认知 模式识别(心理学) 医学 计算机视觉 理论计算机科学 精神科
作者
Xi Chen,Wenwen Zeng,Guoqing Wu,Lei Yu,Wei Ni,Yuanyuan Wang,Yuxiang Gu,Jinhua Yu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 669-678 被引量:1
标识
DOI:10.1007/978-3-031-16443-9_64
摘要

AbstractAs one of the common complications, vascular cognitive impairment (VCI) comprises a range of cognitive disorders related to cerebral vessel diseases like moyamoya disease (MMD), and it is reversible by surgical revascularization in its early stage. However, diagnosis of VCI is time-consuming and less accurate if it solely relies on neuropsychological examination. Even if some existing research connected VCI with medical image, most of them were solely statistical methods with single modality. Therefore, we propose a graph-based framework to integrate both dual-modal imaging information (rs-fMRI and DTI) and non-imaging information to identify VCI in adult MMDs. Unlike some previous studies based on node-level classification, the proposed graph-level model can fully utilize imaging information and improve interpretability of results. Specifically, we firstly design two different graphs for each subject based on characteristics of different modalities and feed them to a dual-modal graph convolution network to extract complementary imaging features and select important brain biomarkers for each subject. Node-based normalization and constraint item are further devised to weakening influence of over-smoothing and natural difference caused by non-imaging information. Experiments on a real dataset not only achieve accuracy of \(80.0\%\), but also highlight some salient brain regions related to VCI in adult MMDs, demonstrating the effectiveness and clinical interpretability of our proposed method. KeywordsVascular cognitive impairmentMoyamoya diseaseFunctional magnetic resonance imagingGraph convolution networkBrain biomarkers
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
又又岩完成签到,获得积分10
2秒前
xiaoputaor完成签到 ,获得积分10
2秒前
活力广缘完成签到,获得积分10
3秒前
皮念寒完成签到,获得积分10
3秒前
打打应助老木虫采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
Fighting发布了新的文献求助10
7秒前
8秒前
壮观的夏云完成签到,获得积分10
9秒前
婷123完成签到 ,获得积分10
10秒前
汉堡包应助细心新之采纳,获得10
10秒前
jojo完成签到 ,获得积分10
11秒前
Milou完成签到,获得积分10
13秒前
squid发布了新的文献求助10
14秒前
helpme完成签到,获得积分10
14秒前
15秒前
脑洞疼应助甜甜的寻真采纳,获得10
15秒前
16秒前
追寻老九发布了新的文献求助10
16秒前
19秒前
张向阳完成签到,获得积分10
19秒前
彭于晏应助无奈的平文采纳,获得10
20秒前
qian完成签到 ,获得积分10
20秒前
21秒前
十三完成签到 ,获得积分10
22秒前
结实曼凡完成签到 ,获得积分10
22秒前
一直会飞的猪完成签到 ,获得积分10
23秒前
汉堡包应助张向阳采纳,获得10
23秒前
老北京发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助150
28秒前
噗噗完成签到,获得积分10
30秒前
Bebi完成签到,获得积分10
31秒前
31秒前
yuanling完成签到 ,获得积分10
32秒前
分析发布了新的文献求助10
38秒前
39秒前
39秒前
书虫完成签到,获得积分10
40秒前
细心新之发布了新的文献求助10
43秒前
田様应助分析采纳,获得10
43秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866167
求助须知:如何正确求助?哪些是违规求助? 3408755
关于积分的说明 10659770
捐赠科研通 3132920
什么是DOI,文献DOI怎么找? 1727847
邀请新用户注册赠送积分活动 832501
科研通“疑难数据库(出版商)”最低求助积分说明 780298