Robotic ultrasound imaging: State-of-the-art and future perspectives

计算机科学 过程(计算) 人工智能 遥操作 模式 人机交互 数据科学 机器人 社会科学 社会学 操作系统
作者
Zhongliang Jiang,Septimiu E. Salcudean,Nassir Navab
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:89: 102878-102878 被引量:117
标识
DOI:10.1016/j.media.2023.102878
摘要

Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques. Additionally, we present the challenges that the scientific community needs to face in the coming years in order to achieve its ultimate goal of developing intelligent robotic sonographer colleagues. These colleagues are expected to be capable of collaborating with human sonographers in dynamic environments to enhance both diagnostic and intraoperative imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的海ge完成签到,获得积分10
刚刚
1秒前
2秒前
bibi11发布了新的文献求助10
2秒前
wubobo发布了新的文献求助10
2秒前
bai完成签到,获得积分10
2秒前
英姑应助v欧冠以哦采纳,获得10
3秒前
Hygge完成签到,获得积分10
3秒前
3秒前
qiyun发布了新的文献求助10
4秒前
歪比巴卜完成签到 ,获得积分10
4秒前
细心夏瑶完成签到,获得积分10
5秒前
lucky完成签到,获得积分10
5秒前
5秒前
一一发布了新的文献求助10
5秒前
dingdeanna完成签到,获得积分10
6秒前
朴实雨泽完成签到,获得积分10
7秒前
7秒前
XUAN发布了新的文献求助10
7秒前
穆晴朗完成签到,获得积分10
7秒前
小蘑菇应助km采纳,获得10
7秒前
大个应助王希澳采纳,获得10
8秒前
8秒前
善学以致用应助蜀安采纳,获得200
8秒前
卢玥沅发布了新的文献求助10
8秒前
冂xx易云发布了新的文献求助20
9秒前
香蕉觅云应助小新采纳,获得10
9秒前
lucky发布了新的文献求助30
9秒前
9秒前
天天快乐应助秋心泉采纳,获得10
10秒前
10秒前
wubobo完成签到,获得积分10
10秒前
强强发布了新的文献求助10
11秒前
11秒前
高先春发布了新的文献求助10
12秒前
王海祥完成签到 ,获得积分10
12秒前
12秒前
庞威完成签到 ,获得积分10
13秒前
14秒前
SciGPT应助杨三采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473404
求助须知:如何正确求助?哪些是违规求助? 4575556
关于积分的说明 14353248
捐赠科研通 4503084
什么是DOI,文献DOI怎么找? 2467419
邀请新用户注册赠送积分活动 1455329
关于科研通互助平台的介绍 1429357