Ultrahigh-flux 2D CoO@MoS2 composite membrane activated peroxymonosulfate through enhanced electron transfer for rapid degradation of refractory benzotriazole

催化作用 化学 苯并三唑 降级(电信) 化学工程 电子转移 复合数 氧化还原 无机化学 光化学 材料科学 有机化学 电信 工程类 复合材料 生物化学 计算机科学
作者
Juan Zhang,Yulong Ma,Yonggang Sun,Lei Wang,Liqiong Wang,Zhen Wang,Bolong Zhao,Jingdan Gao,Min Xu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:471: 144837-144837 被引量:23
标识
DOI:10.1016/j.cej.2023.144837
摘要

The application of heterogeneous advanced oxidation processes (AOPs) in the removal of refractory pollutants has been hindered by several drawbacks, such as difficult recovery of the powder catalyst, the low yields and inefficient utilization of reactive oxygen species (ROS). We developed a novel catalytic membrane named 2D CoO@MoS2 membrane, its catalytic active layer was a composite material formed by MoS2 nanosheets wrapped and intercalated between 2D CoO porous nanoplates, providing abundant active sites and oxygen vacancies (Ov). 2D CoO@MoS2 membrane was applied to activate peroxymonosulfate (PMS) for benzotriazole (BTA) degradation. DFT calculations and series characterizations demonstrated that electron transfer occurred at the contact interface between 2D CoO and MoS2 phase, while the 2D CoO@MoS2 composite could act as an effective electron donor for PMS. The redox cycles of Mo(IV)/Mo(VI) and Ov/O2− could synergistically enhance the regeneration of Co(II), thereby maintaining the cycle of catalytic active center, which facilitated the spontaneous dissociation of PMS to generate various ROS, including SO4− (30.2 μM), 1O2 (8.6 μM) and OH (5.8 μM). These ROS rapidly degraded 99.7% of BTA (20 mg/L) through the nanoconfined layer of hydrophilic membrane with an ultra-high flux of 2172 L m−2h−1 in a super-fast time (∼195 ms). Surprisingly, the degradation rate constant k exhibited 3 to 5 orders of magnitude higher compared to conventional heterogeneous AOPs. Furthermore, the catalytic stability, degradation pathways and biological toxicity of BTA degradation were also evaluated. This membrane-based AOPs technique provides a new approach to overcome the limitations of conventional heterogeneous catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
heure完成签到,获得积分10
1秒前
1秒前
mou发布了新的文献求助10
1秒前
1秒前
LZH完成签到,获得积分10
2秒前
克里斯就是逊啦完成签到,获得积分10
3秒前
4秒前
4秒前
贪玩翎发布了新的文献求助10
4秒前
5秒前
小穆发布了新的文献求助10
5秒前
计可盈完成签到,获得积分20
6秒前
策略完成签到,获得积分10
6秒前
李冬卿完成签到,获得积分10
7秒前
7秒前
欢呼的念瑶完成签到,获得积分10
7秒前
郦如花发布了新的文献求助30
8秒前
斯文败类应助HM采纳,获得10
9秒前
9秒前
kitty完成签到 ,获得积分10
10秒前
无极微光应助猇会不会采纳,获得20
10秒前
煜琪发布了新的文献求助10
10秒前
10秒前
sdyPlant完成签到,获得积分10
10秒前
万能图书馆应助ZSJ采纳,获得10
10秒前
heure发布了新的文献求助10
11秒前
小蘑菇应助拉长的尔冬采纳,获得10
11秒前
11秒前
传奇3应助yy采纳,获得10
11秒前
Kerwin完成签到,获得积分10
11秒前
芋圆应助佳润采纳,获得10
12秒前
浮游应助佳润采纳,获得10
12秒前
健忘傲柏完成签到,获得积分10
14秒前
一修完成签到,获得积分10
14秒前
15秒前
SciGPT应助发发采纳,获得10
15秒前
善学以致用应助橘子采纳,获得10
15秒前
缓慢墨镜发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494624
求助须知:如何正确求助?哪些是违规求助? 4592297
关于积分的说明 14436374
捐赠科研通 4525125
什么是DOI,文献DOI怎么找? 2479216
邀请新用户注册赠送积分活动 1464035
关于科研通互助平台的介绍 1437045