Heterostructured Mn-doped NiSx/NiO/Ni3N nanoplate arrays as bifunctional electrocatalysts for energy-saving hydrogen production and urea degradation

双功能 非阻塞I/O 材料科学 电催化剂 制氢 析氧 化学工程 尿素 无机化学 电解质 化学 催化作用 电极 电化学 工程类 生物化学 有机化学 物理化学
作者
Peng Yi,Yanyan Song,Caiyun Li,Rongzhan Liu,Jiankun Sun
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:619: 156789-156789 被引量:39
标识
DOI:10.1016/j.apsusc.2023.156789
摘要

Urea oxidation reaction (UOR) instead of sluggish oxygen evolution reaction (OER) is a desirable approach to hydrogen production with reduced energy consumption, but developing an efficient bifunctional electrocatalyst for both HER and UOR is still a challenge. Here we report a Mn-doped NiSx/NiO/Ni3N nanosheets arrays loaded on nickel foam (denoted by Mn-NiSx/NiO/Ni3N@NF) catalyst through a simple hydrothermal and thiourea-assisted solid reaction. Benefitting from the densely interlaced network structure and plentiful heterojunctions induced by Mn dopant, Mn-NiSx/NiO/Ni3N@NF displays a superior HER and UOR activity. In the alkaline urea electrolyte, a low potential of 93 mV (for HER) and 1.31 V (for UOR) are needed to achieve 10 mA cm−2. Assembled in a symmetrical two-electrode electrolyzer, Mn-NiSx/NiO/Ni3N@NF can require a cell voltage of 1.70 V to deliver 100 mA cm−2 in alkaline urea medium, reducing by 200 and 239 mV in contrast with the commercial Pt/C@NF||RuO2@NF couple and the conventional water splitting, respectively. Furthermore, Mn-NiSx/NiO/Ni3N@NF as UOR electrode can impel urea removal rate reach up 56% after a successive operation for 32 h. The work provides a green and sustainable strategy from sewage treatment to recycling accompanied by energy-saving hydrogen production and urea-rich wastewater degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助haifenghou采纳,获得10
1秒前
领导范儿应助qian采纳,获得10
2秒前
bluck2020完成签到,获得积分20
2秒前
阿衡发布了新的文献求助10
2秒前
sakiecon完成签到,获得积分10
2秒前
3秒前
星星完成签到,获得积分10
3秒前
星竹关注了科研通微信公众号
3秒前
3秒前
3秒前
欧阳铭发布了新的文献求助10
3秒前
4秒前
4秒前
酷波er应助飞快的映菱采纳,获得10
4秒前
4秒前
4秒前
唐宇轩发布了新的文献求助10
4秒前
4秒前
满意平安完成签到,获得积分10
5秒前
呆萌芙蓉发布了新的文献求助10
5秒前
6秒前
方断秋发布了新的文献求助30
7秒前
DrW发布了新的文献求助10
8秒前
Glorious完成签到,获得积分10
8秒前
ks完成签到,获得积分20
8秒前
风轩轩发布了新的文献求助10
8秒前
9秒前
QQ完成签到 ,获得积分10
9秒前
CodeCraft应助秋水采纳,获得10
10秒前
10秒前
小鱼干完成签到,获得积分20
10秒前
刻苦冰颜发布了新的文献求助10
11秒前
bluck2020发布了新的文献求助10
11秒前
yk完成签到,获得积分10
11秒前
琪琪发布了新的文献求助10
11秒前
光亮的凝雁完成签到,获得积分10
11秒前
11秒前
活泼的世平完成签到,获得积分20
12秒前
12秒前
wwwww发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
理论力学 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4464098
求助须知:如何正确求助?哪些是违规求助? 3926462
关于积分的说明 12184756
捐赠科研通 3579225
什么是DOI,文献DOI怎么找? 1966506
邀请新用户注册赠送积分活动 1005163
科研通“疑难数据库(出版商)”最低求助积分说明 899583