A Two-Stage Strategy for UAV-enabled Wireless Power Transfer in Unknown Environments

计算机科学 无线电源传输 聚类分析 能源消耗 最大化 无线 遗传算法 灵活性(工程) 实时计算 高效能源利用 能量(信号处理) 钥匙(锁) 功率(物理) 功率控制 能量最小化 人工智能 数学优化 机器学习 电信 工程类 物理 计算化学 电气工程 化学 统计 计算机安全 数学 量子力学
作者
Junling Shi,Peiyu Cong,Liang Zhao,Xingwei Wang,Shaohua Wan,Mohsen Guizani
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-15 被引量:25
标识
DOI:10.1109/tmc.2023.3240763
摘要

Due to the outstanding merits such as mobility, high maneuverability, and flexibility, Unmanned Aerial Vehicles (UAVs) are viable mobile power transmitters that can be rapidly deployed in geographically constrained regions. They are good candidates for supplying power to energy-limited Sensor Nodes (SNs) with Wireless Power Transfer (WPT) technology. In this paper, we investigate a UAV-enabled WPT system that transmits power to a set of SNs at unknown positions. A key challenge is how to efficiently gather the locations of SNs and design a power transfer scheme. We formulate a multi-objective optimization problem to jointly optimize these objectives: maximization of UAV's search efficiency, maximization of total harvested energy, minimization of UAV's flight energy consumption and maximization of UAV's energy utilization efficiency. To tackle these issues, we present a two-stage strategy that includes a UAV Motion Control (UMC) algorithm for obtaining the coordinates of SNs and a Dynamic Genetic Clustering (DGC) algorithm for power transfer via grouping SNs into clusters. First, the UMC algorithm enables the UAV to autonomously control its own motion and conduct target search missions. The objective is to make the energy-restricted UAV find as many SNs as feasible without any apriori knowledge of their information. Second, the DGC algorithm is used to optimize the energy consumption of the UAV by combining a genetic clustering algorithm with a dynamic clustering strategy to maximize the amount of energy harvested by SNs and the energy utilization efficiency of the UAV. Finally, experimental results show that the proposed algorithms outperform their counterparts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
511完成签到 ,获得积分10
1秒前
平淡南松完成签到,获得积分10
1秒前
JamesPei应助LiYJS采纳,获得10
3秒前
zhaowenxian完成签到,获得积分20
4秒前
猴子完成签到,获得积分10
5秒前
爱笑的傲晴完成签到,获得积分10
6秒前
英俊的铭应助臭屁大王采纳,获得10
7秒前
科研通AI5应助欢呼的世立采纳,获得10
7秒前
自觉忆山完成签到,获得积分10
8秒前
szy完成签到,获得积分10
8秒前
昀宇完成签到 ,获得积分10
9秒前
11秒前
李爱国应助海藻采纳,获得10
11秒前
11秒前
Owen应助xyhua925采纳,获得10
11秒前
欣喜电源完成签到,获得积分10
12秒前
14秒前
fanny完成签到 ,获得积分10
14秒前
搜集达人应助臭屁大王采纳,获得10
15秒前
Jasper应助科研采纳,获得10
15秒前
留胡子的夜白完成签到,获得积分10
15秒前
bull9518发布了新的文献求助10
15秒前
cckyt完成签到,获得积分10
16秒前
16秒前
木瓜小五哥完成签到,获得积分10
16秒前
甜蜜的振家完成签到,获得积分10
18秒前
jj完成签到,获得积分10
18秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
18秒前
打打应助陈佳欣采纳,获得10
18秒前
入海完成签到,获得积分10
19秒前
lcy完成签到,获得积分10
19秒前
mew桑完成签到,获得积分10
19秒前
哈哈哈发布了新的文献求助10
20秒前
孤独的AD钙完成签到,获得积分10
20秒前
iNk应助idynamics采纳,获得10
21秒前
22秒前
iNk应助小女子常戚戚采纳,获得10
22秒前
张国麒完成签到 ,获得积分10
23秒前
saudade完成签到,获得积分10
23秒前
fenmiao完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798584
求助须知:如何正确求助?哪些是违规求助? 3344255
关于积分的说明 10319312
捐赠科研通 3060833
什么是DOI,文献DOI怎么找? 1679798
邀请新用户注册赠送积分活动 806776
科研通“疑难数据库(出版商)”最低求助积分说明 763372