材料科学
无定形固体
反键分子轨道
半导体
化学物理
凝聚态物理
电子
电子迁移率
电负性
原子轨道
结晶学
光电子学
化学
物理
量子力学
有机化学
作者
Masato Tsuchii,Zhen Chen,Yasushi Hirose,Tetsuya Hasegawa
摘要
Amorphous mixed-anion semiconductors (AMASs) such as amorphous zinc oxynitride and amorphous zinc oxysulfide (a-ZnOS) have attracted attention as rare-metal-free amorphous semiconductors that exhibit electron mobility comparable to or greater than the electron mobilities of typical amorphous oxide semiconductors (AOSs), including amorphous In–Ga–Zn–O (a-IGZO). A characteristic feature of AMASs is that their conduction-band minimum (CBM) mainly consists of s-orbitals of the single cation, in contrast to conventional AOSs, whose CBM is composed of s-orbitals of multiple cations. This unique band structure suggests that the potential of carrier electrons in AMASs exhibits less spatial fluctuation than that of carrier electrons in AOSs. In this study, we analyzed the temperature dependence of the electron transport properties of a-ZnOS thin films using the random barrier model to evaluate the potential barrier height and its spatial variation. The analyses revealed that the barrier height of a-ZnOS is comparable to that of a-IGZO. This result was attributed to the large covalent nature of Zn–S bonds strongly influencing the potential at the CBM through the antibonding interaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI