Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM

活性成分 药物发现 计算机科学 中医药 药物重新定位 资源(消歧) 药品 计算生物学 医学 生物信息学 生物 药理学 替代医学 计算机网络 病理
作者
Sai Tian,Jinbo Zhang,Shunling Yuan,Qun Wang,Chao Lv,Jin‐Xing Wang,Jiansong Fang,Lu Fu,Jian Yang,Xianpeng Zu,Jing Zhao,Weidong Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:57
标识
DOI:10.1093/bib/bbad027
摘要

With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
xuyingtao发布了新的文献求助10
3秒前
Lucas应助VISSUA采纳,获得30
4秒前
机灵白桃完成签到,获得积分10
4秒前
怡然冰之完成签到 ,获得积分10
4秒前
汉堡包应助yookia采纳,获得10
5秒前
5秒前
大方抽屉发布了新的文献求助10
6秒前
CipherSage应助缓慢的半芹采纳,获得10
7秒前
limon1024发布了新的文献求助10
7秒前
结实星星完成签到,获得积分0
8秒前
9秒前
端庄的砖头完成签到,获得积分10
10秒前
11秒前
11秒前
三水完成签到 ,获得积分10
11秒前
金金肖完成签到,获得积分10
12秒前
帅气成仁完成签到 ,获得积分10
12秒前
南烛完成签到 ,获得积分10
13秒前
慕青应助哈哈呼呼采纳,获得10
13秒前
幸福的雪枫完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
16秒前
fei发布了新的文献求助50
16秒前
哈哈完成签到,获得积分10
16秒前
16秒前
金金肖发布了新的文献求助10
17秒前
bias完成签到,获得积分10
18秒前
18秒前
18秒前
星瑗发布了新的文献求助10
19秒前
仿生人发布了新的文献求助10
19秒前
serena0_0发布了新的文献求助10
19秒前
yj发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949257
求助须知:如何正确求助?哪些是违规求助? 3494666
关于积分的说明 11073283
捐赠科研通 3225357
什么是DOI,文献DOI怎么找? 1783010
邀请新用户注册赠送积分活动 867287
科研通“疑难数据库(出版商)”最低求助积分说明 800710