Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM

活性成分 药物发现 计算机科学 中医药 药物重新定位 资源(消歧) 药品 计算生物学 医学 生物信息学 生物 药理学 替代医学 计算机网络 病理
作者
Sai Tian,Jinbo Zhang,Shunling Yuan,Qun Wang,Chao Lv,Jin‐Xing Wang,Jiansong Fang,Lu Fu,Jian Yang,Xianpeng Zu,Jing Zhao,Weidong Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:53
标识
DOI:10.1093/bib/bbad027
摘要

With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VAPORX发布了新的文献求助10
1秒前
dream发布了新的文献求助10
1秒前
不爱吃醋发布了新的文献求助10
1秒前
甜美的眼睛完成签到,获得积分10
3秒前
Lucas应助酒酒8采纳,获得10
3秒前
li发布了新的文献求助10
3秒前
mayisang完成签到,获得积分10
3秒前
Ava应助武玲玲采纳,获得10
3秒前
淡淡大山完成签到,获得积分10
3秒前
Fiona678发布了新的文献求助20
4秒前
4秒前
4秒前
科研通AI5应助minino采纳,获得10
5秒前
李小白应助文房四宝采纳,获得10
5秒前
科研通AI5应助星睿采纳,获得10
6秒前
HEIKU应助啦啦啦啦采纳,获得10
7秒前
8R60d8应助啦啦啦啦采纳,获得10
7秒前
冰魂应助啦啦啦啦采纳,获得10
7秒前
斯寜应助啦啦啦啦采纳,获得10
7秒前
单薄飞莲完成签到,获得积分10
7秒前
梨儿发布了新的文献求助10
8秒前
不爱吃姜发布了新的文献求助10
8秒前
稳稳稳发布了新的文献求助10
8秒前
8秒前
apoptoxin4896发布了新的文献求助10
11秒前
乐乐应助xh采纳,获得10
12秒前
12秒前
14秒前
人机一号完成签到,获得积分10
14秒前
Owen应助xxp采纳,获得10
15秒前
chaojia_niu完成签到,获得积分10
16秒前
大黄豆发布了新的文献求助10
16秒前
17秒前
情怀应助Harley采纳,获得10
18秒前
打打应助夜雨采纳,获得10
19秒前
19秒前
Harvey02发布了新的文献求助10
20秒前
天天快乐应助梨儿采纳,获得10
20秒前
21秒前
安然发布了新的文献求助10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811188
求助须知:如何正确求助?哪些是违规求助? 3355583
关于积分的说明 10376670
捐赠科研通 3072454
什么是DOI,文献DOI怎么找? 1687465
邀请新用户注册赠送积分活动 811671
科研通“疑难数据库(出版商)”最低求助积分说明 766719