亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM

活性成分 药物发现 计算机科学 中医药 药物重新定位 资源(消歧) 药品 计算生物学 医学 生物信息学 生物 药理学 替代医学 计算机网络 病理
作者
Sai Tian,Jinbo Zhang,Shunling Yuan,Qun Wang,Chao Lv,Jin‐Xing Wang,Jiansong Fang,Lu Fu,Jian Yang,Xianpeng Zu,Jing Zhao,Weidong Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:77
标识
DOI:10.1093/bib/bbad027
摘要

With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助风停了采纳,获得10
2秒前
辰溪完成签到,获得积分10
3秒前
4秒前
医学完成签到,获得积分10
4秒前
10秒前
jimoon发布了新的文献求助10
13秒前
大模型应助khan采纳,获得10
13秒前
朱明完成签到 ,获得积分10
16秒前
领导范儿应助飞快的书蕾采纳,获得10
17秒前
18秒前
小马同学应助jimoon采纳,获得10
20秒前
科研通AI5应助jimoon采纳,获得10
20秒前
丘比特应助jimoon采纳,获得10
20秒前
NexusExplorer应助洋洋采纳,获得10
21秒前
24秒前
weofihqerg完成签到,获得积分10
25秒前
25秒前
weofihqerg发布了新的文献求助10
28秒前
饼子发布了新的文献求助10
33秒前
米线完成签到 ,获得积分10
33秒前
42秒前
周旭给周旭的求助进行了留言
42秒前
万能图书馆应助khan采纳,获得10
47秒前
Yekh发布了新的文献求助10
48秒前
54秒前
MRu发布了新的文献求助30
59秒前
千万雷同发布了新的文献求助10
1分钟前
冷静妙之发布了新的文献求助10
1分钟前
Ava应助内向如松采纳,获得30
1分钟前
乐乐应助徐志豪采纳,获得10
1分钟前
dagangwood完成签到 ,获得积分10
1分钟前
1分钟前
共享精神应助khan采纳,获得10
1分钟前
乐乐应助文天采纳,获得10
1分钟前
周旭发布了新的文献求助10
1分钟前
1分钟前
123456发布了新的文献求助10
1分钟前
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186017
求助须知:如何正确求助?哪些是违规求助? 4371340
关于积分的说明 13612062
捐赠科研通 4223700
什么是DOI,文献DOI怎么找? 2316584
邀请新用户注册赠送积分活动 1315199
关于科研通互助平台的介绍 1264220