Adaptive parameter optimization approach for robotic grinding of weld seam based on laser vision sensor

研磨 磨料 表面粗糙度 焊接 研磨 材料科学 机械工程 平面磨削 机器人 机器视觉 计算机科学 人工智能 工程类 复合材料
作者
Jimin Ge,Zhaohui Deng,Zhongyang Li,Tao Liu,Rongjin Zhuo,Xi Chen
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:82: 102540-102540 被引量:25
标识
DOI:10.1016/j.rcim.2023.102540
摘要

Automatic robot grinding technology has been widely applied in the modern manufacturing industry. A flexible abrasive belt wheel used to grind the weld can avoid burns on the base material and improve the processing efficiency. However, when the robot grinds a weld seam, the material removal depth does not coincide with the feed depth because of the soft contact and uneven weld height, affecting the weld seam surface uniformity. Given these problems, an adaptive parameter optimization approach for the robotic grinding of a weld seam was proposed based on a laser vision sensor and a material removal model. First, the depth of weld seam removal was obtained by a laser vision sensor based on triangulation in real-time. Then, a macroscopic material removal model considering flexible deformation was established to determine the relationship between the weld height and process parameters, and the model coefficient was experimentally fitted to ensure the accuracy and reliability of the model. In addition, the data of real-time interaction structure between the robot controller and grinding system were obtained and used to unsure that the rotational speed of the belt wheel increased in the convex part and decreased in the concave part, in order to obtain a uniform weld seam surface. Comparative experiments were performed to verify the effectiveness and superiority of the method, and experiments on the surface roughness and weld seam surface height difference were conducted to verify the universality of the method. Experimental results show that the residual height of the weld after grinding can be controlled within 0.2mm, and the maximum removal height difference can be controlled within 0.05mm. The surface roughness Ra of the weld after grinding could reach 0.408 µm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆ma发布了新的文献求助10
1秒前
2秒前
包破茧完成签到,获得积分10
2秒前
tjy完成签到 ,获得积分10
2秒前
Xu1909完成签到,获得积分10
2秒前
心木完成签到 ,获得积分10
3秒前
3秒前
研友_8DWkVZ完成签到,获得积分10
3秒前
遇疯儿发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
7秒前
笑点低鱼发布了新的文献求助10
8秒前
绝伦发布了新的文献求助10
10秒前
林乐发布了新的文献求助10
10秒前
顾矜应助1874采纳,获得10
10秒前
10秒前
王佳亮发布了新的文献求助700
10秒前
老迟到的羞花完成签到,获得积分20
10秒前
曾曾完成签到,获得积分10
11秒前
今后应助幼汁汁鬼鬼采纳,获得10
11秒前
13秒前
牛牛牛发布了新的文献求助10
13秒前
啦啦啦完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
浮游应助TT2022采纳,获得10
16秒前
17秒前
梦寻完成签到,获得积分10
17秒前
鱼鱼鱼完成签到,获得积分10
17秒前
科研通AI6应助holycale采纳,获得10
18秒前
彼岸发布了新的文献求助10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979386
求助须知:如何正确求助?哪些是违规求助? 4232080
关于积分的说明 13182198
捐赠科研通 4023012
什么是DOI,文献DOI怎么找? 2201141
邀请新用户注册赠送积分活动 1213588
关于科研通互助平台的介绍 1129781