HSNet: A hybrid semantic network for polyp segmentation

计算机科学 分割 卷积神经网络 编码器 人工智能 变压器 水准点(测量) 语义学(计算机科学) 人工神经网络 模式识别(心理学) 量子力学 操作系统 大地测量学 物理 电压 程序设计语言 地理
作者
Wenchao Zhang,Chong Fu,Yu Zheng,Fang‐Yuan Zhang,Yanli Zhao,Chiu‐Wing Sham
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106173-106173 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.106173
摘要

Automatic polyp segmentation can help physicians to effectively locate polyps (a.k.a. region of interests) in clinical practice, in the way of screening colonoscopy images assisted by neural networks (NN). However, two significant bottlenecks hinder its effectiveness, disappointing physicians' expectations. (1) Changeable polyps in different scaling, orientation, and illumination, bring difficulty in accurate segmentation. (2) Current works building on a dominant decoder-encoder network tend to overlook appearance details (e.g., textures) for a tiny polyp, degrading the accuracy to differentiate polyps. For alleviating the bottlenecks, we investigate a hybrid semantic network (HSNet) that adopts both advantages of Transformer and convolutional neural networks (CNN), aiming at improving polyp segmentation. Our HSNet contains a cross-semantic attention module (CSA), a hybrid semantic complementary module (HSC), and a multi-scale prediction module (MSP). Unlike previous works on segmenting polyps, we newly insert the CSA module, which can fill the gap between low-level and high-level features via an interactive mechanism that exchanges two types of semantics from different NN attentions. By a dual-branch structure of Transformer and CNN, we newly design an HSC module, for capturing both long-range dependencies and local details of appearance. Besides, the MSP module can learn weights for fusing stage-level prediction masks of a decoder. Experimentally, we compared our work with 10 state-of-the-art works, including both recent and classical works, showing improved accuracy (via 7 evaluative metrics) over 5 benchmark datasets, e.g., it achieves 0.926/0.877 mDic/mIoU on Kvasir-SEG, 0.948/0.905 mDic/mIoU on ClinicDB, 0.810/0.735 mDic/mIoU on ColonDB, 0.808/0.74 mDic/mIoU on ETIS, and 0.903/0.839 mDic/mIoU on Endoscene. The proposed model is available at (https://github.com/baiboat/HSNet).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
injuly完成签到,获得积分10
2秒前
科研通AI5应助827584450采纳,获得30
2秒前
3秒前
追梦远行人完成签到 ,获得积分10
3秒前
chi发布了新的文献求助10
3秒前
机智剑通完成签到,获得积分20
4秒前
lucky完成签到,获得积分10
4秒前
6秒前
shihangZhang发布了新的文献求助10
6秒前
思源应助陈昭琼采纳,获得10
7秒前
7秒前
熊有鹏发布了新的文献求助10
8秒前
9秒前
平常的毛豆应助asdf采纳,获得10
10秒前
狂奔弟弟完成签到 ,获得积分10
10秒前
10秒前
10秒前
霸气映之完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
13秒前
华仔应助和谐青烟采纳,获得10
14秒前
15秒前
gaon完成签到,获得积分10
15秒前
小小莫完成签到,获得积分10
15秒前
16秒前
16秒前
称心涵柳发布了新的文献求助10
16秒前
16秒前
黑旋风发布了新的文献求助10
17秒前
17秒前
孙璧宬完成签到,获得积分10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800545
求助须知:如何正确求助?哪些是违规求助? 3345702
关于积分的说明 10327141
捐赠科研通 3062280
什么是DOI,文献DOI怎么找? 1680908
邀请新用户注册赠送积分活动 807268
科研通“疑难数据库(出版商)”最低求助积分说明 763614