A Resilient MEMS Sensor Array–AI System for DGA-Based Transformer Fault Monitoring in High-H2 Environments

微电子机械系统 变压器 断层(地质) 故障检测与隔离 材料科学 纳米技术 工程类 计算机科学 电气工程 生物 执行机构 电压 古生物学
作者
Ze Zhang,Yang Zhang,Tengfei Li,Cheng Zhang,Z.D. Luo,Bofeng Luo,Bing Tian,Yulong Zhao,Hairong Wang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.5c02569
摘要

MOS gas sensors offer significant potential for real-time dissolved gas analysis (DGA) in power transformer monitoring. However, their performance is often degraded in high-hydrogen (H2) environments due to cross-interference, which impairs detection accuracy and limits practical deployment. To overcome these challenges, we propose a co-optimized sensing framework that integrates a MEMS-based hybrid sensor array with a CNN-LSTM-AM deep learning model. The hybrid array combines Pd-Au and MOS sensors to exploit their complementary gas-response behaviors, enabling reliable hydrocarbon detection even under H2 saturation. On the algorithmic side, a 1D convolutional neural network (CNN) extracts subtle gas features from saturated MOS signals, while the LSTM-based attention mechanism (LSTM-AM) compensates for Pd-Au sensor drift by learning temporal dependencies. To further enhance robustness, a smooth-label training method is introduced to reduce prediction instability during abrupt concentration transitions. Experimental results demonstrate that our framework achieves a mean squared error (MSE) of 0.0020 on a custom datset (D1), outperforming the UCI-TGS benchmark by 87.3% (MSE: 0.0157). Moreover, the smooth-label strategy reduces prediction variance by 50% compared to conventional labeling. This integrated hardware-algorithm system not only improves Pd-Au sensor performance and reduces training loss by half but also provides an accurate and robust solution for real-time DGA, contributing to enhanced diagnostic reliability in smart grid applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助拉姆采纳,获得10
刚刚
1秒前
1秒前
2秒前
小孙发布了新的文献求助20
2秒前
甜甜白莲发布了新的文献求助30
2秒前
blablawindy完成签到,获得积分10
2秒前
Tasker-X发布了新的文献求助10
3秒前
杨枝甘露完成签到 ,获得积分10
3秒前
微渺完成签到,获得积分10
4秒前
gxch发布了新的文献求助10
4秒前
chao发布了新的文献求助10
6秒前
zeng发布了新的文献求助10
6秒前
6秒前
6秒前
NexusExplorer应助hh采纳,获得10
8秒前
果果糖YLJ发布了新的文献求助10
9秒前
10秒前
dsfsd完成签到,获得积分10
10秒前
粉面菜蛋完成签到,获得积分10
11秒前
chao完成签到,获得积分10
11秒前
12秒前
雪落发布了新的文献求助10
12秒前
CipherSage应助小孙采纳,获得10
13秒前
讨厌所有人完成签到,获得积分10
13秒前
Luna完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
minever白完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
19秒前
地狱跳跳虎完成签到 ,获得积分10
20秒前
Blummer完成签到,获得积分10
20秒前
Terfi完成签到,获得积分10
21秒前
完美世界应助TaoYe采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得30
22秒前
Hello应助契心采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069868
求助须知:如何正确求助?哪些是违规求助? 4291111
关于积分的说明 13369607
捐赠科研通 4111377
什么是DOI,文献DOI怎么找? 2251468
邀请新用户注册赠送积分活动 1256618
关于科研通互助平台的介绍 1189158