亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptable microplastic classification using similarity learning on µFTIR spectra collected from µFTIR focal plane array imaging

作者
Justin A. Smolen,Georgianne W. Moore,Nicholas D. Perez,Karen L. Wooley
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (42): e2509745122-e2509745122
标识
DOI:10.1073/pnas.2509745122
摘要

Deep learning on micro-Fourier transform infrared (µFTIR) spectra has the potential to provide a reliable, automated approach to classify and identify microplastics. However, deep learning models often come with certain limitations, including exhaustive dataset requirements, overfitting, and the need to retrain when new classes are introduced or new data are substantially different from the training set. This work explores a similarity learning approach to training deep learning models to address these issues for microplastic classification. A one-dimensional convolutional neural network (CNN) was trained by similarity learning on a dataset of µFTIR spectra acquired from 45 manufactured microplastic samples of 11 plastic compositions and compared with cross-entropy training of the same CNN architecture as well as classical machine learning algorithms. The CNN trained by similarity learning consistently yielded the highest accuracies (up to a 0.973 F1-score) across the multiple classes of microplastics. Notably, despite only training on microplastic spectra collected under pristine conditions, the CNN trained via similarity learning maintained the highest accuracy (up to a 0.905 F1-score) on a “noisy” dataset consisting of microplastics spiked onto filters with high amounts of exogenous background material. Furthermore, similarity learning combined with support-vector classifiers also allowed for the detection and separation of microplastic polymer-composition classes not contained in the training set. Overall, this approach is able to achieve high accuracy in microplastic classification despite challenges posed by the diversity of microplastic polymer compositions, limited time and resources for dataset preparation, and high amounts of background noise that are common in FTIR spectra collected from real-world microplastic samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫叶完成签到,获得积分10
刚刚
苏哑完成签到,获得积分10
1秒前
大模型应助苏哑采纳,获得10
4秒前
4秒前
6秒前
ddingk发布了新的文献求助10
9秒前
zzf发布了新的文献求助10
11秒前
15秒前
农夫完成签到,获得积分0
16秒前
饼子发布了新的文献求助10
18秒前
Wuyiqin完成签到,获得积分10
22秒前
24秒前
冰河不冰完成签到,获得积分10
25秒前
FashionBoy应助bai采纳,获得10
26秒前
29秒前
开胃咖喱发布了新的文献求助10
30秒前
啊强完成签到 ,获得积分10
33秒前
研友_VZG7GZ应助yyy采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
GingerF应助科研通管家采纳,获得10
35秒前
所所应助科研通管家采纳,获得10
35秒前
GingerF应助科研通管家采纳,获得50
35秒前
我是老大应助科研通管家采纳,获得10
35秒前
windy应助千万雷同采纳,获得10
35秒前
aXiong发布了新的文献求助10
35秒前
陈凯发布了新的文献求助20
36秒前
bkagyin应助木木夕云采纳,获得10
44秒前
Jasper应助22222采纳,获得10
44秒前
852应助aXiong采纳,获得10
45秒前
kun完成签到 ,获得积分10
49秒前
50秒前
52秒前
丘比特应助khan采纳,获得10
54秒前
Hello应助香奈宝采纳,获得10
56秒前
yyy发布了新的文献求助10
57秒前
58秒前
bai发布了新的文献求助10
1分钟前
共享精神应助MRu采纳,获得10
1分钟前
lsl完成签到 ,获得积分10
1分钟前
Jasper应助陈凯采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186017
求助须知:如何正确求助?哪些是违规求助? 4371340
关于积分的说明 13612062
捐赠科研通 4223700
什么是DOI,文献DOI怎么找? 2316584
邀请新用户注册赠送积分活动 1315199
关于科研通互助平台的介绍 1264220