材料科学
锂(药物)
电解质
离子电导率
化学工程
聚合物
准固态
聚合
阴极
离子键合
共价有机骨架
纳米技术
电极
离子
有机化学
复合材料
物理化学
化学
医学
工程类
内分泌学
色素敏化染料
多孔性
作者
Ran Bu,Bing Zhang,Di Li,Hao Cheng,Qidong Ruan,Wei Zhong,Chaoqiang Tan,Yifan Wang,Jiahui Zhang,Baodong Chen,C. X. Liu,En‐Qing Gao,Yingying Lü
标识
DOI:10.1002/adfm.202512777
摘要
Abstract Precise modulation of polymer chain entanglements, which governs the core properties of the solid polymer electrolytes (SPEs) in solid‐state lithium batteries, remains challenging due to uncontrolled polymerization processes. Here, this limitation is addressed by designing a self‐triggered single‐Li⁺‐conductive covalent organic framework (COF) with highly crystalline orientation to template the in situ polymerization of 1,3‐dioxolane (DOL). The COF's ordered pores, functionalized with initiators, regulate poly(1,3‐dioxolane) (PDOL) chain entanglement while creating a novel all‐interconnected structure favorable for ion diffusion. The resulting COF‐templated PDOL electrolyte (PDCM) exhibits exceptional ionic conductivity (1.35 mS cm −1 at 20 °C), high Li + transfer number (0.74), remarkable fire safety, and surprising steady lithium deposition even after operation for > 7 months (5000 h). PDCM bears a high‐voltage cathode (LiNi 0.8 Co 0.1 Mn 0.1 O 2 , NCM811) and functions in LiFePO 4 ||Li cells over a wide operating temperature range (−20 °C to 60 °C) and maintains excellent durability even under a large current density of 0.5C in quasi‐solid‐state lithium‐metal batteries. Notably, the COF template is readily recoverable, underscoring its scalability and industrial viability.
科研通智能强力驱动
Strongly Powered by AbleSci AI