清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optic Nerve Atrophy Conditions Associated With 3D Unsegmented Optical Coherence Tomography Volumes Using Deep Learning

医学 视神经炎 青光眼 视神经 接收机工作特性 眼科 光学相干层析成像 前部缺血性视神经病变 萎缩 病理 内科学 多发性硬化 精神科
作者
David Szanto,Jui-Kai Wang,Brian Woods,Asala Erekat,Mona K. Garvin,Randy H. Kardon,Mark J. Kupersmith
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:143 (10): 803-803 被引量:3
标识
DOI:10.1001/jamaophthalmol.2025.2766
摘要

Importance Accurate differentiation of optic nerve head (ONH) atrophy is vital for guiding diagnosis and treatment of conditions such as glaucoma, nonarteritic anterior ischemic optic neuropathy (NAION), and optic neuritis. Traditional 2-dimensional assessments may overlook subtle, volumetric changes. Objective To determine whether a 3-dimensional (3D) deep learning model trained on unsegmented ONH optical coherence tomography (OCT) scans can reliably distinguish optic atrophy in glaucoma, NAION, optic neuritis, and healthy eyes. Design, Setting, and Participants This cross-sectional study used data from multiple clinical trials and referral centers (2008-2025), including randomized trials, longitudinal studies, and referral clinics. Participants included patients with glaucoma, NAION, or optic neuritis and healthy control patients. Exposures Three ResNet-3D-18 models were trained using 5-fold stratified cross-validation. One assessed the full OCT volume, another focused only on the peripapillary region (PPR), and the third considered only the ONH. Identical data splits were used to allow direct performance comparison. Main Outcomes and Measures Classification accuracy, macro area under the receiver operating characteristic curve (AUC-ROC), precision, recall, and F1 scores, aggregated across all validation folds. Confusion matrices were generated to characterize misclassifications. Results A total of 7014 Cirrus ONH OCT scans from 1382 eyes of glaucoma (n = 113), NAION (n = 311), optic neuritis (n = 163), and healthy controls (n = 715) were analyzed. The mean (SD) age was 54.2 (16.9) years; there were 733 (65%) male patients and 402 (35%) female patients. The entire-volume model achieved 88.9% accuracy (macro AUC-ROC, 0.977; 95% CI, 0.974-0.979) and F1 scores of 0.94, 0.87, 0.78, and 0.91 for glaucoma, NAION, optic neuritis, and healthy eyes, respectively. The PPR-only model reached 85.9% accuracy (AUC-ROC, 0.970; 95% CI, 0.967-0.972), while the ONH-only model attained 87.0% accuracy (AUC-ROC, 0.972; 95% CI, 0.970-0.975). Both achieved F1 scores from 0.71 to 0.94. Optic neuritis presented the greatest classification challenge, misclassified as NAION or healthy when axonal loss was severe or minimal. Activation maps revealed disease-specific regions of interest in the retina, including the retinal nerve fiber layer, ganglion cell layer, and retinal pigment epithelium. Conclusions and Relevance Deep learning–based analysis of unsegmented OCT scans reliably distinguished between different forms of optic nerve atrophy, suggesting subtle, disease-specific structural patterns. This automated approach may support diagnostic efforts, guide clinical management of optic neuropathies, and complement less standardized imaging modalities and subjective clinical impressions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daomaihu完成签到,获得积分10
12秒前
ArkZ完成签到 ,获得积分0
19秒前
dx完成签到,获得积分10
26秒前
31秒前
debu9完成签到,获得积分10
31秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
科研通AI6应助chengshu666采纳,获得10
42秒前
50秒前
DHW1703701完成签到,获得积分10
1分钟前
开朗艳一完成签到,获得积分10
1分钟前
游01完成签到 ,获得积分10
1分钟前
影子完成签到,获得积分10
1分钟前
regene完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lingling完成签到 ,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
huanghe完成签到,获得积分10
2分钟前
久久完成签到 ,获得积分10
2分钟前
chengshu666发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助阿米尔盼盼采纳,获得10
2分钟前
耶啵耶啵完成签到 ,获得积分10
2分钟前
Syan完成签到,获得积分10
2分钟前
喜喜完成签到,获得积分10
2分钟前
美满惜寒完成签到,获得积分10
2分钟前
cityhunter7777完成签到,获得积分10
2分钟前
朝夕之晖完成签到,获得积分10
2分钟前
BMG完成签到,获得积分10
2分钟前
洋芋饭饭完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分0
2分钟前
runtang完成签到,获得积分10
2分钟前
BowieHuang完成签到,获得积分0
2分钟前
张浩林完成签到,获得积分10
2分钟前
清水完成签到,获得积分10
2分钟前
呵呵哒完成签到,获得积分10
2分钟前
ys1008完成签到,获得积分10
2分钟前
Temperature完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555096
求助须知:如何正确求助?哪些是违规求助? 4639628
关于积分的说明 14656490
捐赠科研通 4581618
什么是DOI,文献DOI怎么找? 2512888
邀请新用户注册赠送积分活动 1487587
关于科研通互助平台的介绍 1458591