Metallic Nanocluster-Based Sniffing Device for Identification of Malignancy in Gastric Cancer Tissues

电子鼻 气味 癌症 恶性肿瘤 主成分分析 荧光 传感器阵列 生物医学工程 色谱法 材料科学 化学 计算机科学 病理 纳米技术 医学 人工智能 解剖 内科学 机器学习 物理 量子力学 有机化学
作者
Hoda Sharifi,Javad Tashkhourian,Bita Geramizadeh,Elham Ghohestani,Vahid Zangouri,Fatemeh Asadian,Bahram Hemmateenejad
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (7): 5578-5590 被引量:16
标识
DOI:10.1021/acsanm.3c00029
摘要

Analysis of volatile organic compounds (VOCs) emitted from the human organism can provide useful information about normal physiological processes as well as pathological disorders. The aim of this work is to develop a portable, inexpensive, on-site, fast, small design paper-based device based on the electronic nose (E-nose) concept for the detection of malignancy in gastric cancer (GC) by analyzing volatile organic compounds emitted from human tissue. For this purpose, cancerous and noncancerous tissue samples were provided from 22 patients diagnosed with GC, esophageal cancer (EC), and neuroendocrine carcinoma (NEC). In this system, eight types of fluorescent metallic nanoclusters (NCs) as sensing elements were immobilized on a paper substrate. A microcentrifuge tube was used to create a reaction environment to communicate between a paper device containing NCs and VOCs emitted from tissue samples. After exposing the sensors to headspace of the tissues, the emitted VOCs reacted with NCs and led to changes in the fluorescence intensity of NCs. For pattern recognition and statistical analysis, chemometric methods including principal component analysis, linear discriminant analysis, and partial least square discriminant analysis were applied. The sensor array was able to discriminate between fresh cancerous and normal tissues with 95% accuracy. In summary, we fabricated an optical nose device that can sniff the odor of tissues and then identify the malignant tissues in less than 4 h. So, it has the potential for point-of-need applications in the hospital and can offer results in the same time duration required for a patient to recover from anesthesia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Jonathan发布了新的文献求助10
1秒前
科烟生完成签到,获得积分10
2秒前
所所应助psj采纳,获得10
2秒前
3秒前
4秒前
我思故我在完成签到,获得积分0
4秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
芥末薯条发布了新的文献求助10
7秒前
10秒前
11秒前
Orange应助sinlar采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
啦啦啦发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
华仔应助浮生绘采纳,获得10
14秒前
15秒前
乐乐应助潇洒的元风采纳,获得10
15秒前
qiyewang发布了新的文献求助10
15秒前
16秒前
psj发布了新的文献求助10
17秒前
cugwzr完成签到,获得积分10
19秒前
在水一方应助李笑格采纳,获得10
19秒前
20秒前
20秒前
李迅迅发布了新的文献求助10
21秒前
Sunech发布了新的文献求助10
24秒前
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
qiyewang完成签到,获得积分20
26秒前
浮生绘发布了新的文献求助10
27秒前
小马甲应助芥末薯条采纳,获得10
27秒前
28秒前
研友_VZG7GZ应助qiyewang采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785469
求助须知:如何正确求助?哪些是违规求助? 5687957
关于积分的说明 15467600
捐赠科研通 4914566
什么是DOI,文献DOI怎么找? 2645270
邀请新用户注册赠送积分活动 1593065
关于科研通互助平台的介绍 1547398