Identifying and estimating effects of sustained interventions under parallel trends assumptions

逆概率加权 协变量 估计员 观察研究 加权 混淆 反概率 心理干预 计量经济学 统计 人口 平均处理效果 医学 数学 计算机科学 贝叶斯概率 环境卫生 精神科 放射科 后验概率
作者
Audrey Renson,Michael G. Hudgens,Alexander P. Keil,Paul N Zivich,Allison E. Aiello
出处
期刊:Biometrics [Wiley]
标识
DOI:10.1111/biom.13862
摘要

Many research questions in public health and medicine concern sustained interventions in populations defined by substantive priorities. Existing methods to answer such questions typically require a measured covariate set sufficient to control confounding, which can be questionable in observational studies. Differences-in-differences rely instead on the parallel trends assumption, allowing for some types of time-invariant unmeasured confounding. However, most existing difference-in-differences implementations are limited to point treatments in restricted subpopulations. We derive identification results for population effects of sustained treatments under parallel trends assumptions. In particular, in settings where all individuals begin follow-up with exposure status consistent with the treatment plan of interest but may deviate at later times, a version of Robins' g-formula identifies the intervention-specific mean under stable unit treatment value assumption, positivity, and parallel trends. We develop consistent asymptotically normal estimators based on inverse-probability weighting, outcome regression, and a double robust estimator based on targeted maximum likelihood. Simulation studies confirm theoretical results and support the use of the proposed estimators at realistic sample sizes. As an example, the methods are used to estimate the effect of a hypothetical federal stay-at-home order on all-cause mortality during the COVID-19 pandemic in spring 2020 in the United States.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助陈莹采纳,获得10
1秒前
GXY发布了新的文献求助10
1秒前
嘟嘟发布了新的文献求助10
2秒前
4秒前
Akim应助单纯的雅香采纳,获得10
4秒前
5秒前
6秒前
成就的书包完成签到,获得积分10
7秒前
小疙瘩发布了新的文献求助10
7秒前
8秒前
metalmd发布了新的文献求助10
8秒前
8秒前
学术蠕虫发布了新的文献求助10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
sutharsons应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
XShu发布了新的文献求助10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得30
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
Owen应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
文艺明杰发布了新的文献求助100
13秒前
所所应助嘟嘟采纳,获得10
13秒前
15秒前
HMZ完成签到,获得积分10
15秒前
研友_LkYKJZ完成签到,获得积分10
15秒前
田様应助Khr1stINK采纳,获得10
15秒前
15秒前
风趣夜云完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808