LIBS and Raman image fusion: An original approach based on the use of chemometric methodologies

激光诱导击穿光谱 人工智能 图像分辨率 单变量 拉曼光谱 计算机科学 样品(材料) 成像光谱学 化学计量学 模式识别(心理学) 高光谱成像 光谱分辨率 多元统计 生物系统 材料科学 激光器 机器学习 谱线 化学 光学 物理 生物 色谱法 天文
作者
Alessandro Nardecchia,Anna de Juan,Vincent Motto‐Ros,C. Fabre,Ludovic Duponchel
出处
期刊:Spectrochimica Acta Part B: Atomic Spectroscopy [Elsevier]
卷期号:198: 106571-106571 被引量:17
标识
DOI:10.1016/j.sab.2022.106571
摘要

Laser-induced breakdown spectroscopy (LIBS) imaging is a powerful and innovative technique with a constant increasing success and interest in many scientific fields. Using LIBS imaging, it is possible to highlight the presence of atoms in complex samples of different nature to achieve important spectral and spatial information. Simple preparation of the sample, an acquisition rate that can reach a speed of 1 kHz, a high spatial resolution (in the order of μm scale) and a sensitivity in the order of ppm are among the assets of this technique. An additional valuable aspect in the current LIBS setups is the possibility to acquire with the same LIBS platform spectroscopic responses resulting from another radiation-matter interaction, such as Raman measurements. The most common data treatment approach to LIBS imaging data is still univariate, i.e., the observation of maps at certain representative LIBS wavelength, but this prevents extracting all the useful information contained in the acquired spectra and obtaining an integral understanding of the correlation between the spatial and spectral information. Chemometrics and multivariate analysis in the framework of spectral unmixing can lead to these outcomes. Therefore, the aim of this work is to show the potential of investigating simultaneously LIBS and Raman imaging spectral data acquired on the same sample with the assistance of the unmixing method Multivariate Curve resolution – Alternating Least Squares (MCR-ALS). To illustrate the value of the thorough interpretation of fused LIBS and Raman images by unmixing analysis and the steps to take place in this kind of study, a real sample of a complex polymetallic mineral formed by several mineral phases incorporating carbonates, silicates and sulphides has been used. In this paper we will show that using a pipeline analysis already validated in another work of our group, it is possible to extract pure chemical contributions of the heterogeneous aforementioned minerals. The data analysis protocol presented is valid for the investigation of LIBS and Raman spectroscopies separately, but becomes much more valuable when the two acquired data sets for the same sample are simultaneously examined, leading to new aspects that would be hindered if not investigated at the same time with a suitable fusion approach. • An interesting data fusion strategy to manage big hyperspectral data sets • A data compression approach to keep relevant chemical information • Better spectroscopic interpretations thanks to LIBS/Raman fusion
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杨维维完成签到,获得积分20
1秒前
万能图书馆应助一一一采纳,获得10
2秒前
灰灰应助哈哈酱采纳,获得10
2秒前
秃子完成签到,获得积分10
3秒前
123完成签到,获得积分20
3秒前
汉堡包应助嚯嚯采纳,获得10
4秒前
4秒前
SciGPT应助周志昂采纳,获得10
5秒前
典雅宛秋发布了新的文献求助10
5秒前
欣慰枕头发布了新的文献求助10
5秒前
迷路尔珍发布了新的文献求助10
7秒前
7秒前
包容的葵阴完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
爆米花应助椛鈊采纳,获得10
9秒前
10秒前
Hilda007发布了新的文献求助10
10秒前
香蕉觅云应助杨钧贺采纳,获得10
10秒前
11秒前
Jasper应助万信心采纳,获得10
11秒前
Akim应助liandli123采纳,获得20
12秒前
lang完成签到,获得积分10
12秒前
orixero应助温婉的毛衣采纳,获得30
13秒前
偏遇应助WZ采纳,获得10
13秒前
JamesPei应助典雅宛秋采纳,获得10
14秒前
15秒前
yeurekar发布了新的文献求助10
16秒前
一一一发布了新的文献求助10
16秒前
蔺建薇完成签到,获得积分20
16秒前
mmol发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
情怀应助雾雨魔理沙采纳,获得10
20秒前
虚幻若雁完成签到,获得积分10
20秒前
范小楠发布了新的文献求助10
20秒前
浮游应助尊敬的高跟鞋采纳,获得10
20秒前
20秒前
冷酷豌豆完成签到,获得积分10
21秒前
迷路尔珍完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527767
求助须知:如何正确求助?哪些是违规求助? 4617554
关于积分的说明 14558765
捐赠科研通 4556151
什么是DOI,文献DOI怎么找? 2496779
邀请新用户注册赠送积分活动 1477103
关于科研通互助平台的介绍 1448411