Transcriptional Patterns of Brain Structural Covariance Network Abnormalities Associated With Suicidal Thoughts and Behaviors in Major Depressive Disorder

心理学 重性抑郁障碍 联动装置(软件) 临床心理学 神经科学 精神科 脑功能 功能连接 毒物控制 医学 功能(生物学) 发展心理学 大脑结构与功能 默认模式网络 神经网络 抑郁症状
作者
Kun Qin,Huiru Li,Huawei Zhang,Li Yin,Baolin Wu,Nanfang Pan,Ching‐Po Lin,Neil P. Roberts,John A. Sweeney,Xiaoqi Huang,Qiyong Gong,Zhiyun Jia
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:96 (6): 435-444 被引量:26
标识
DOI:10.1016/j.biopsych.2024.01.026
摘要

Abstract

Background

Although brain structural covariance network (SCN) abnormalities were associated with suicidal thoughts and behaviors (STB) in individuals with major depressive disorder (MDD), previous studies reported inconsistent findings based on small sample size and underlying transcriptional patterns remained poorly understood.

Methods

Using a multicenter MRI dataset including 218 MDD patients with STB (MDD-STB), 230 MDD patients without STB (MDD-nSTB) and 263 healthy controls (HC), we established individualized SCN based on regional morphometric measures and assessed network topological metrics using graph theoretical analysis. Machine learning methods were applied to explore and compare the diagnostic value of morphometric and topological features in identifying MDD and STB at the individual level. Brain-wide relationship between STB-related connectomic alterations and gene expression were examined using partial least square regression.

Results

Group comparisons revealed that SCN topological deficits associated with STB were identified in the prefrontal, anterior cingulate, and lateral temporal cortices. Combining morphometric and topological features allowed for individual-level characterization of MDD and STB. Topological features exhibited greater contribution to distinguishing between patients with and without STB. STB-related connectomic alterations were spatially correlated with the expression of genes enriched for cellular metabolism and synaptic signaling.

Conclusions

These findings revealed robust brain structural deficits at network level, highlight the importance of SCN topological measures in characterizing individual suicidality, and demonstrate its linkage to molecular function and cell types, providing novel insights into the neurobiological underpinnings and potential markers for prediction and prevention of suicide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊大发布了新的文献求助10
1秒前
1秒前
1秒前
kiterunner发布了新的文献求助10
3秒前
5秒前
藏锋发布了新的文献求助10
5秒前
5秒前
6秒前
木子秀完成签到,获得积分10
6秒前
sjr123完成签到,获得积分20
6秒前
9秒前
10秒前
Yun发布了新的文献求助10
11秒前
liuxinyu完成签到 ,获得积分10
11秒前
sjr123发布了新的文献求助20
12秒前
yw发布了新的文献求助10
12秒前
xiaoyao发布了新的文献求助10
12秒前
12秒前
13秒前
CipherSage应助陶醉的羞花采纳,获得10
13秒前
benoit完成签到,获得积分10
14秒前
shadow完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
慕青应助香妃采纳,获得10
16秒前
bkagyin应助SCI采纳,获得10
20秒前
小二郎应助嗷唔一口吃掉采纳,获得10
20秒前
20秒前
lijingyi发布了新的文献求助10
20秒前
墨非墨完成签到 ,获得积分10
21秒前
陈海伦完成签到 ,获得积分10
24秒前
熊大完成签到,获得积分10
26秒前
搜集达人应助含糊的广缘采纳,获得10
26秒前
科研通AI6应助薛栋潮采纳,获得10
27秒前
28秒前
liangjinan完成签到,获得积分10
29秒前
29秒前
FF完成签到 ,获得积分10
31秒前
34秒前
科研通AI6应助容与采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422137
求助须知:如何正确求助?哪些是违规求助? 4537021
关于积分的说明 14155837
捐赠科研通 4453620
什么是DOI,文献DOI怎么找? 2442999
邀请新用户注册赠送积分活动 1434403
关于科研通互助平台的介绍 1411439