已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transcriptional Patterns of Brain Structural Covariance Network Abnormalities Associated With Suicidal Thoughts and Behaviors in Major Depressive Disorder

心理学 重性抑郁障碍 协方差 临床心理学 神经科学 精神科 认知 统计 数学
作者
Kun Qin,Huiru Li,Huawei Zhang,Li Yin,Baolin Wu,Nanfang Pan,Ching‐Po Lin,Neil P. Roberts,John A. Sweeney,Xiaoqi Huang,Qiyong Gong,Zhiyun Jia
出处
期刊:Biological Psychiatry [Elsevier BV]
卷期号:96 (6): 435-444 被引量:10
标识
DOI:10.1016/j.biopsych.2024.01.026
摘要

Abstract

Background

Although brain structural covariance network (SCN) abnormalities were associated with suicidal thoughts and behaviors (STB) in individuals with major depressive disorder (MDD), previous studies reported inconsistent findings based on small sample size and underlying transcriptional patterns remained poorly understood.

Methods

Using a multicenter MRI dataset including 218 MDD patients with STB (MDD-STB), 230 MDD patients without STB (MDD-nSTB) and 263 healthy controls (HC), we established individualized SCN based on regional morphometric measures and assessed network topological metrics using graph theoretical analysis. Machine learning methods were applied to explore and compare the diagnostic value of morphometric and topological features in identifying MDD and STB at the individual level. Brain-wide relationship between STB-related connectomic alterations and gene expression were examined using partial least square regression.

Results

Group comparisons revealed that SCN topological deficits associated with STB were identified in the prefrontal, anterior cingulate, and lateral temporal cortices. Combining morphometric and topological features allowed for individual-level characterization of MDD and STB. Topological features exhibited greater contribution to distinguishing between patients with and without STB. STB-related connectomic alterations were spatially correlated with the expression of genes enriched for cellular metabolism and synaptic signaling.

Conclusions

These findings revealed robust brain structural deficits at network level, highlight the importance of SCN topological measures in characterizing individual suicidality, and demonstrate its linkage to molecular function and cell types, providing novel insights into the neurobiological underpinnings and potential markers for prediction and prevention of suicide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果冻橙完成签到,获得积分10
刚刚
bastien完成签到,获得积分10
4秒前
4秒前
听闻墨笙完成签到 ,获得积分10
6秒前
遇上就这样吧完成签到,获得积分0
6秒前
7秒前
8秒前
errui发布了新的文献求助10
10秒前
lizhiqian2024发布了新的文献求助10
10秒前
尊敬寒松发布了新的文献求助10
11秒前
呼呼呼等风来完成签到,获得积分10
12秒前
开放沛柔完成签到 ,获得积分10
13秒前
雪白晓灵完成签到,获得积分10
14秒前
小胖完成签到 ,获得积分10
16秒前
21秒前
znlion完成签到,获得积分10
22秒前
重景完成签到 ,获得积分10
23秒前
火星完成签到 ,获得积分10
24秒前
彭十八完成签到,获得积分10
25秒前
25秒前
26秒前
麓生发布了新的文献求助10
27秒前
27秒前
菜大鸭完成签到,获得积分10
28秒前
清爽的冬寒完成签到 ,获得积分10
29秒前
菜大鸭发布了新的文献求助10
30秒前
yuuu完成签到 ,获得积分10
31秒前
Lzj完成签到 ,获得积分20
31秒前
FERN0826完成签到 ,获得积分10
33秒前
长命百岁完成签到 ,获得积分10
33秒前
橙子完成签到 ,获得积分10
33秒前
汉堡包应助菜大鸭采纳,获得10
35秒前
38秒前
在学海中挣扎完成签到 ,获得积分10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
爆米花应助科研通管家采纳,获得10
40秒前
40秒前
扬帆起航完成签到 ,获得积分10
41秒前
Leviathan完成签到 ,获得积分10
43秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782572
求助须知:如何正确求助?哪些是违规求助? 3327957
关于积分的说明 10234005
捐赠科研通 3042953
什么是DOI,文献DOI怎么找? 1670358
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758919