Classification method for folded flue-cured tobacco based on hyperspectral imaging and conventional neural networks

高光谱成像 卷积神经网络 烟草烘烤 预处理器 人工智能 人工神经网络 特征(语言学) 模式识别(心理学) 多光谱图像 计算机科学 生物 植物 语言学 哲学
作者
Xuan Wei,Chanjuan Deng,Wei Fang,Chuangyuan Xie,Shiyang Liu,Minrui Lu,Fang Wang,Yuzhu Wang
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:212: 118279-118279 被引量:12
标识
DOI:10.1016/j.indcrop.2024.118279
摘要

The efficient classification of flue-cured tobacco by automated machines continues to pose a significant challenge. Producers are grappling with escalating labor shortages in the grading of flue-cured tobacco due to the demanding working conditions and a robust workforce. This paper proposes an innovative approach to ascertain the grades of folded flue-cured tobacco using hyperspectral imaging (HSI) technology in conjunction with a one-dimensional convolutional neural network (1D-CNN) model. Initially, a comprehensive dataset comprising 405 hyperspectral images capturing ten grades of folded flue-cured tobacco was meticulously collected, illustrating various degrees of folding. Subsequently, diverse preprocessing techniques were applied to the spectra obtained from the regions of interest. Moreover, advanced algorithms, including the least angle regression algorithm (LAR), successive project algorithm (SPA), and competitive adaptive reweighted sampling algorithm (CARS), were employed to select the most pertinent feature bands. Finally, based on the feature wavelengths, a 1D-CNN grading model was established and compared with random forest (RF), artificial neural network (ANN), backpropagation neural network (BPNN), and residual neural network (ResNet) classification models. Comparative analysis of these models reveals that the LAR-CNN algorithm outperforms others, achieving a classification accuracy of 96.3% and a minimum loss function value of 0.1. Notably, the LAR algorithm implemented in this study successfully reduces the number of bands used in the model from 360 to 20. In summary, this fusion of HSI and 1D-CNN not only conveys a distinct advantage in discerning leaf folds and intricate morphological traits but also heralds an innovative era for the automation of flue-cured tobacco classification, offering unprecedented precision and efficiency. This methodology paves the way for remarkable strides in augmenting the efficacy and precision of automated flue-cured tobacco grading, mitigate subjective biases in manual grading methods, and offer essential technical support for the development of automatic grading devices for folded flue-cured tobacco leaves. Hence, continued research and development initiatives stand as indispensable to realize the full potential of such innovative technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊完成签到,获得积分10
3秒前
5秒前
王富贵啊完成签到,获得积分10
6秒前
chlorine完成签到,获得积分10
8秒前
13秒前
13秒前
蓝天应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
15秒前
学海WY完成签到,获得积分10
15秒前
糟糕的铁锤应助细腻茗采纳,获得50
15秒前
科研通AI6.1应助hainan采纳,获得10
16秒前
16秒前
小郭完成签到,获得积分10
18秒前
Xiong完成签到,获得积分10
19秒前
小杭776完成签到,获得积分0
19秒前
xiaoxin发布了新的文献求助10
21秒前
qim发布了新的文献求助10
22秒前
深情安青应助一一一采纳,获得10
22秒前
ctyyyu完成签到,获得积分10
23秒前
ff发布了新的文献求助10
23秒前
小蘑菇应助mmyhn采纳,获得10
23秒前
27秒前
研友_Z6Qrbn完成签到,获得积分10
29秒前
君莫笑发布了新的文献求助10
31秒前
陈BB发布了新的文献求助10
31秒前
YYJ完成签到,获得积分10
32秒前
32秒前
33秒前
35秒前
blenx完成签到,获得积分10
36秒前
qim完成签到,获得积分20
38秒前
一一一发布了新的文献求助10
39秒前
尹jl关注了科研通微信公众号
39秒前
40秒前
迟来的内啡肽完成签到 ,获得积分10
41秒前
41秒前
HugginBearOuO完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872802
求助须知:如何正确求助?哪些是违规求助? 6492313
关于积分的说明 15669935
捐赠科研通 4990213
什么是DOI,文献DOI怎么找? 2690152
邀请新用户注册赠送积分活动 1632674
关于科研通互助平台的介绍 1590561