Classification method for folded flue-cured tobacco based on hyperspectral imaging and conventional neural networks

高光谱成像 卷积神经网络 烟草烘烤 预处理器 人工智能 人工神经网络 特征(语言学) 模式识别(心理学) 多光谱图像 计算机科学 生物 植物 语言学 哲学
作者
Xuan Wei,Chanjuan Deng,Wei Fang,Chuangyuan Xie,Shiyang Liu,Minrui Lu,Fang Wang,Yuzhu Wang
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:212: 118279-118279 被引量:5
标识
DOI:10.1016/j.indcrop.2024.118279
摘要

The efficient classification of flue-cured tobacco by automated machines continues to pose a significant challenge. Producers are grappling with escalating labor shortages in the grading of flue-cured tobacco due to the demanding working conditions and a robust workforce. This paper proposes an innovative approach to ascertain the grades of folded flue-cured tobacco using hyperspectral imaging (HSI) technology in conjunction with a one-dimensional convolutional neural network (1D-CNN) model. Initially, a comprehensive dataset comprising 405 hyperspectral images capturing ten grades of folded flue-cured tobacco was meticulously collected, illustrating various degrees of folding. Subsequently, diverse preprocessing techniques were applied to the spectra obtained from the regions of interest. Moreover, advanced algorithms, including the least angle regression algorithm (LAR), successive project algorithm (SPA), and competitive adaptive reweighted sampling algorithm (CARS), were employed to select the most pertinent feature bands. Finally, based on the feature wavelengths, a 1D-CNN grading model was established and compared with random forest (RF), artificial neural network (ANN), backpropagation neural network (BPNN), and residual neural network (ResNet) classification models. Comparative analysis of these models reveals that the LAR-CNN algorithm outperforms others, achieving a classification accuracy of 96.3% and a minimum loss function value of 0.1. Notably, the LAR algorithm implemented in this study successfully reduces the number of bands used in the model from 360 to 20. In summary, this fusion of HSI and 1D-CNN not only conveys a distinct advantage in discerning leaf folds and intricate morphological traits but also heralds an innovative era for the automation of flue-cured tobacco classification, offering unprecedented precision and efficiency. This methodology paves the way for remarkable strides in augmenting the efficacy and precision of automated flue-cured tobacco grading, mitigate subjective biases in manual grading methods, and offer essential technical support for the development of automatic grading devices for folded flue-cured tobacco leaves. Hence, continued research and development initiatives stand as indispensable to realize the full potential of such innovative technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的洋葱完成签到,获得积分10
刚刚
今后应助123456采纳,获得10
1秒前
初心完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
Final发布了新的文献求助10
3秒前
3秒前
xxx完成签到,获得积分10
4秒前
小辰关注了科研通微信公众号
4秒前
香蕉惜儿发布了新的文献求助10
5秒前
5秒前
共享精神应助xh采纳,获得10
6秒前
querido应助柒咩咩采纳,获得10
6秒前
傻妞完成签到,获得积分10
7秒前
professor完成签到,获得积分10
7秒前
xxx发布了新的文献求助10
7秒前
都是发布了新的文献求助10
7秒前
图喵喵完成签到,获得积分10
8秒前
正直听芹完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
10秒前
11秒前
酷波er应助Final采纳,获得10
11秒前
搜集达人应助愤怒的雨莲采纳,获得10
11秒前
xiaoyu完成签到,获得积分10
12秒前
柠柚萌不萌完成签到,获得积分10
12秒前
13秒前
尔尔发布了新的文献求助10
13秒前
13秒前
oxygen发布了新的文献求助10
13秒前
orixero应助pass采纳,获得10
14秒前
星星亮应助酷炫灵安采纳,获得10
14秒前
15秒前
15秒前
15秒前
Grondwet发布了新的文献求助10
15秒前
xh发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811156
求助须知:如何正确求助?哪些是违规求助? 3355532
关于积分的说明 10376459
捐赠科研通 3072336
什么是DOI,文献DOI怎么找? 1687391
邀请新用户注册赠送积分活动 811622
科研通“疑难数据库(出版商)”最低求助积分说明 766715