Causality between COVID-19 and multiple myeloma: a two-sample Mendelian randomization study and Bayesian co-localization

孟德尔随机化 全基因组关联研究 生物 单核苷酸多态性 因果关系(物理学) 遗传学 基因 基因型 物理 量子力学 遗传变异
作者
Shuaiyuan Wang,Na Zhao,Ting Luo,Songzi Kou,Miaomiao Sun,Kuisheng Chen
出处
期刊:Clinical and Experimental Medicine [Springer Science+Business Media]
卷期号:24 (1) 被引量:1
标识
DOI:10.1007/s10238-024-01299-y
摘要

Abstract Infection is the leading cause of morbidity and mortality in patients with multiple myeloma (MM). Studying the relationship between different traits of Coronavirus 2019 (COVID-19) and MM is critical for the management and treatment of MM patients with COVID-19. But all the studies on the relationship so far were observational and the results were also contradictory. Using the latest publicly available COVID-19 genome-wide association studies (GWAS) data, we performed a bidirectional Mendelian randomization (MR) analysis of the causality between MM and different traits of COVID-19 (SARS-CoV-2 infection, COVID-19 hospitalization, and severe COVID-19) and use multi-trait analysis of GWAS(MTAG) to identify new associated SNPs in MM. We performed co-localization analysis to reveal potential causal pathways between diseases and over-representation enrichment analysis to find involved biological pathways. IVW results showed SARS-CoV-2 infection and COVID-19 hospitalization increased risk of MM. In the reverse analysis, the causal relationship was not found between MM for each of the different symptoms of COVID-19. Co-localization analysis identified LZTFL1, MUC4, OAS1, HLA-C, SLC22A31, FDX2, and MAPT as genes involved in COVID-19-mediated causation of MM. These genes were mainly related to immune function, glycosylation modifications and virus defense. Three novel MM-related SNPs were found through MTAG, which may regulate the expression of B3GNT6. This is the first study to use MR to explore the causality between different traits of COVID-19 and MM. The results of our two-way MR analysis found that SARS-CoV-2 infection and COVID-19 hospitalization increased the susceptibility of MM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiancib202完成签到,获得积分10
2秒前
huamuamber发布了新的文献求助30
9秒前
stop here完成签到,获得积分10
12秒前
SunLijia完成签到 ,获得积分10
13秒前
14秒前
乐观海云完成签到 ,获得积分10
15秒前
beleve完成签到,获得积分10
19秒前
baroque完成签到 ,获得积分10
22秒前
yi完成签到,获得积分10
23秒前
Yunis完成签到 ,获得积分10
25秒前
行云流水完成签到,获得积分10
29秒前
隐形曼青应助baroque采纳,获得10
30秒前
英勇海完成签到 ,获得积分10
30秒前
我要读博士完成签到 ,获得积分10
30秒前
31秒前
无奈的豆沙包完成签到 ,获得积分10
36秒前
你好呀嘻嘻完成签到 ,获得积分10
36秒前
Lucas应助xiewuhua采纳,获得10
42秒前
mojomars完成签到,获得积分10
42秒前
42秒前
断章完成签到 ,获得积分10
47秒前
不良帅完成签到,获得积分10
49秒前
53秒前
xiewuhua发布了新的文献求助10
58秒前
紫陌完成签到,获得积分10
58秒前
聪明的秋天完成签到,获得积分10
58秒前
玩命的小虾米完成签到 ,获得积分10
1分钟前
花菜炒肉完成签到 ,获得积分10
1分钟前
lesyeuxdexx完成签到 ,获得积分10
1分钟前
勤奋的立果完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
cq_2完成签到,获得积分0
1分钟前
杨永佳666完成签到 ,获得积分10
1分钟前
HXL完成签到 ,获得积分10
1分钟前
忧虑的花卷完成签到,获得积分10
1分钟前
大气夜山完成签到 ,获得积分10
1分钟前
coolplex完成签到 ,获得积分10
1分钟前
唐唐完成签到,获得积分10
1分钟前
隐形曼青应助xiewuhua采纳,获得30
1分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811747
求助须知:如何正确求助?哪些是违规求助? 3356021
关于积分的说明 10379150
捐赠科研通 3072972
什么是DOI,文献DOI怎么找? 1688146
邀请新用户注册赠送积分活动 811860
科研通“疑难数据库(出版商)”最低求助积分说明 766893