Aggravation of global maize yield loss risk under various hot and dry scenarios using multiple types of prediction approaches

产量(工程) 环境科学 气候变化 气候学 全球变暖 作物产量 气候模式 回归 农学 统计 数学 生态学 生物 材料科学 冶金 地质学
作者
Xiaomeng Yin,Guoyong Leng,Shengzhi Huang,Jian Peng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:44 (4): 1058-1073 被引量:1
标识
DOI:10.1002/joc.8371
摘要

Abstract High temperature and drought are widely known to cause a reduction of crop yield, but the simultaneously occurring risks in major producing countries and the associated uncertainty across various climate change scenarios remain unclear at the global scale. Here, we evaluate global maize yield loss risk (i.e., the probability of yield reduction by over 10% relative to historical trend yield during 1981–2010) across 30 hot and dry scenarios using regression, machine learning and process‐based models. Besides examining yield loss risk in a single country, we predict the potential risks simultaneously occurring in the top two and top ten producing countries. The three approaches agree on the aggravation of yield loss risk under dry and hot scenarios, but show large discrepancy in the magnitude and sensitivities. Specifically, 2°C warming alone could lead to a global yield loss risk of 73%, 100% and 62% based on regression, long‐short term memory (LSTM) and process‐based models, respectively, and warming‐induced risks can be further aggravated by droughts especially in process models. Global yield loss by over 10% would even become the new norm (i.e., yield loss probability is 100%) when temperature increases by over 2°C in some models. Importantly, the probabilities of yield loss simultaneously occurring in the top two countries (i.e., United States and China) and top ten countries are unexpectedly high and could even become 100% under extreme hot and dry scenarios. Our results highlight the large risks that future climate change may bring to multiple exporting and importing countries simultaneously, thus threating global food market and security. We also emphasize the important value of using different types of prediction approaches for yield projection under hot and dry scenarios, which enables more realistic estimation of uncertainty range than a single type of model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
m李完成签到 ,获得积分10
刚刚
科目三应助小陈子采纳,获得10
2秒前
5秒前
悦耳的荔枝完成签到,获得积分20
7秒前
沙里飞完成签到 ,获得积分10
10秒前
10秒前
zzzzzzzz发布了新的文献求助10
11秒前
懒羊羊大王完成签到 ,获得积分10
11秒前
求知若渴完成签到,获得积分10
11秒前
枫之林完成签到,获得积分10
13秒前
xff完成签到,获得积分20
13秒前
冰魂应助金木木采纳,获得20
15秒前
肥宅小周发布了新的文献求助10
16秒前
ru完成签到 ,获得积分10
17秒前
chezi完成签到,获得积分10
17秒前
18秒前
zzzzzzzz完成签到,获得积分10
19秒前
善学以致用应助谢富杰采纳,获得10
20秒前
逸龙完成签到,获得积分10
22秒前
小化化爱学习完成签到,获得积分10
22秒前
Green完成签到,获得积分10
22秒前
小周完成签到 ,获得积分10
22秒前
qiuli完成签到,获得积分10
23秒前
23秒前
24秒前
TaoJ发布了新的文献求助10
26秒前
xff发布了新的文献求助30
27秒前
蒋时晏应助腼腆的立诚采纳,获得30
28秒前
水本无忧87完成签到,获得积分10
29秒前
小陈子完成签到,获得积分10
33秒前
平常天佑完成签到,获得积分10
33秒前
35秒前
36秒前
了0完成签到 ,获得积分10
37秒前
木云浅夏发布了新的文献求助10
39秒前
小李老博应助小奇采纳,获得10
39秒前
科研通AI5应助淡然白安采纳,获得10
41秒前
幽默语兰发布了新的文献求助10
41秒前
成懂事长发布了新的文献求助10
41秒前
snoke完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213925
捐赠科研通 3038575
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290