Structure Design for High-Performance Li-Rich Mn-Based Layered Oxides, O2- or O3-Type Cathodes, What’s Next?

电化学 阴极 氧化物 堆积 氧化还原 材料科学 离子 氧气 纳米技术 工程物理 化学工程 化学 电极 工程类 物理化学 物理 冶金 有机化学
作者
Xiaowen Zhao,Xin Cao,Haoshen Zhou
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (3): 307-315 被引量:9
标识
DOI:10.1021/accountsmr.3c00217
摘要

ConspectusLi-rich layered oxides have received extensive attention as promising high-energy-density cathodes for next-generation Li-ion batteries. Different from traditional cathodes such as LiCoO2, LiFePO4, and Li2MnO4, Li-rich oxides generally can harvest superior discharge capacities exceeding 250 mAh g–1, which originated from the contribution of oxygen redox chemistry. However, lattice oxygen release and irreversible TM transition would induce severe structure distortion and capacity degradation as well as voltage attenuation within Li-rich cathodes during electrochemical processes, which greatly limits their industrial applications in next-generation Li-ion batteries. To address these issues, structure design has been proposed and demonstrated as an efficient strategy to improve both the structural and electrochemical stability of Li-rich oxide cathodes. In particular, burgeoning O2-type Li-rich cathodes designed by adjusting the stacking sequence of oxygen atoms exhibited unique electrochemical properties that are superior to those of the traditional O3 counterparts. Nevertheless, it raises a crucial question regarding the selection of prevailing design prototypes: the O2- or O3-type of Li-rich oxide cathode greatly determines the future development direction of next-generation Li-ion batteries.In this Account, we mainly summarize our recent progress and understanding of the design of the O2- and O3-types from the perspectives of oxygen redox behaviors and structural evolution, aiming to provide insightful guidance for the rational design of high-performance Li-rich cathode materials. This Account begins with presenting representative structure designs based on a layered O3-type platform, including regulations of Li content within both transition metal (TM) and alkali metal (AM) layers and designs of TM proportions and superstructure units. Moreover, unique configuration designs have been combed and discussed in which Li–O–□ and Li–O–Na configurations greatly facilitate the invertibility of oxygen redox reactions. In parallel, when altering the oxygen stacking sequence from ABCABC to ABCB, unique characteristics such as inhibited voltage decay and enhanced cycling stability as well as reversible TM ion migration can be achieved within the O2-type structures, where the synthesis routes and underlying mechanism of reversible TM migration in the O2-type cathodes have been summarized in detail. Additionally, our latest progress on structural designs of Li+ coordination environment regulation and biphasic layered structure were also presented, which could support the elevation of structure stability and cyclability of Li-rich cathodes upon long cycles, paving new structural design directions in addition to prevailing O3- and O2-type counterparts. At last, the challenges faced by the O3- and O2-type cathode materials and consequent solutions have been proposed. We hope this Account can provide fundamental insights and a route map for the proper design of high-energy-density Li-rich cathodes to achieve stable oxygen redox reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助沉甸甸采纳,获得10
1秒前
科研通AI2S应助动听的夏天采纳,获得10
2秒前
CuteG完成签到 ,获得积分10
2秒前
霸气大米完成签到 ,获得积分10
3秒前
kk完成签到,获得积分10
4秒前
冷艳的小懒虫完成签到 ,获得积分10
4秒前
小唐完成签到,获得积分10
5秒前
sparks完成签到,获得积分10
6秒前
123发布了新的文献求助10
10秒前
bkagyin应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
orixero应助科研通管家采纳,获得10
12秒前
子车茗应助科研通管家采纳,获得20
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
13秒前
xzn1123应助科研通管家采纳,获得20
13秒前
heavenhorse应助Zhengkeke采纳,获得30
14秒前
俏皮的鼠标完成签到,获得积分10
14秒前
非洲大象完成签到,获得积分10
17秒前
20秒前
lonelymusic完成签到,获得积分10
20秒前
24秒前
粥粥完成签到,获得积分10
26秒前
28秒前
王振有发布了新的文献求助10
29秒前
31秒前
31秒前
刘刘刘完成签到,获得积分10
32秒前
sh完成签到,获得积分10
33秒前
莫誓发布了新的文献求助10
37秒前
你好完成签到 ,获得积分0
38秒前
sunhx发布了新的文献求助10
38秒前
38秒前
iiiid发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872