Global, regional, and local acceptance of solar power

情绪分析 许可证 软件部署 太阳能 计算机科学 数据科学 人工智能 功率(物理) 物理 量子力学 操作系统
作者
Kalle Nuortimo,Janne Härkönen,Kristijan Breznik
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:193: 114296-114296 被引量:4
标识
DOI:10.1016/j.rser.2024.114296
摘要

This study aims to analyse solar power acceptance by different methods in various knowledge domains to gain a holistic view of global, regional, and local acceptance. This includes considering different related aspects of solar energy, including the overall concept, solar panel, the device converting sunlight into electricity, and photovoltaics, the technology. This multidisciplinary approach is possible through the advancement of artificial intelligence technology. Technology acceptance and sentiment, the emotion, are different concepts with slightly different influences on technology deployment. Acceptance can be granted as a social license and can be affected by how the media discusses the technologies. The acceptance further influences investment decisions and wider technology adoption. Sentiment can be obtained by machine or human-made analysis, in which the polarity (positive, negative, or neutral) is defined while the acceptance levels are indicative. This study applies opinion mining, chat generative pre-trained transformer, and generalised aggregated lexical tables methods to analyse the acceptance and sentiment of solar power at different levels. The findings and the original contribution involve highlighting the potential of artificial intelligence to study general acceptance. Artificial intelligence appears capable of providing a fast indication of both media sentiment and the level of acceptance of solar power. Traditional opinion mining seems to be more capable of acknowledging trends. This supports understanding the market environment and factors affecting technology development and deployment. Decision-making can benefit from a fast indication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助认真凝安采纳,获得10
1秒前
Julie发布了新的文献求助10
1秒前
1秒前
2秒前
隔壁的多串君完成签到,获得积分10
2秒前
krixdina完成签到,获得积分10
4秒前
4秒前
科研通AI6应助Beautieat1采纳,获得10
4秒前
舒服的寻云完成签到 ,获得积分10
4秒前
VV发布了新的文献求助10
5秒前
Luozhiang发布了新的文献求助10
6秒前
Moon完成签到,获得积分20
7秒前
一区是只猫完成签到,获得积分10
7秒前
香蕉觅云应助cockcrow采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
猫橘汽水完成签到,获得积分10
13秒前
小猪佩奇完成签到,获得积分10
13秒前
14秒前
15秒前
所所应助hhhhh采纳,获得10
15秒前
Beautieat1完成签到,获得积分10
15秒前
满意绝音完成签到,获得积分10
15秒前
太阳完成签到 ,获得积分10
15秒前
16秒前
16秒前
小蘑菇应助jesmines采纳,获得10
16秒前
17秒前
满怀发布了新的文献求助10
18秒前
笑傲江湖发布了新的文献求助10
18秒前
18秒前
大胆诗云发布了新的文献求助10
18秒前
wwwwc发布了新的文献求助10
19秒前
19秒前
潇洒荷花发布了新的文献求助10
20秒前
余亮完成签到,获得积分10
20秒前
于吉武完成签到,获得积分10
20秒前
天苍野茫完成签到,获得积分10
20秒前
ding应助言非离采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520836
求助须知:如何正确求助?哪些是违规求助? 4612497
关于积分的说明 14533665
捐赠科研通 4550060
什么是DOI,文献DOI怎么找? 2493332
邀请新用户注册赠送积分活动 1474567
关于科研通互助平台的介绍 1446106