Image-Based Subtype Classification for Glioblastoma Using Deep Learning: Prognostic Significance and Biologic Relevance

胶质母细胞瘤 生物 卷积神经网络 肿瘤科 病理 计算生物学 癌症研究 医学 人工智能 计算机科学
作者
Min Yuan,Haolun Ding,Bangwei Guo,Miaomiao Yang,Yaning Yang,Steven Xu
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:2
标识
DOI:10.1200/cci.23.00154
摘要

PURPOSE To apply deep learning algorithms to histopathology images, construct image-based subtypes independent of known clinical and molecular classifications for glioblastoma, and produce novel insights into molecular and immune characteristics of the glioblastoma tumor microenvironment. MATERIALS AND METHODS Using whole-slide hematoxylin and eosin images from 214 patients with glioblastoma in The Cancer Genome Atlas (TCGA), a fine-tuned convolutional neural network model extracted deep learning features. Biclustering was used to identify subtypes and image feature modules. Prognostic value of image subtypes was assessed via Cox regression on survival outcomes and validated with 189 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data set. Morphological, molecular, and immune characteristics of glioblastoma image subtypes were analyzed. RESULTS Four distinct subtypes and modules (imClust1-4) were identified for the TCGA patients with glioblastoma on the basis of the image feature data. The glioblastoma image subtypes were significantly associated with overall survival (OS; P = .028) and progression-free survival ( P = .003). Apparent association was also observed for disease-specific survival ( P = .096). imClust2 had the best prognosis for all three survival end points (eg, after 25 months, imClust2 had >7% surviving patients than the other subtypes). Examination of OS in the external validation using the unseen CPTAC data set showed consistent patterns. Multivariable Cox analyses confirmed that the image subtypes carry unique prognostic information independent of known clinical and molecular predictors. Molecular and immune profiling revealed distinct immune compositions of the tumor microenvironment in different image subtypes and may provide biologic explanations for the patterns in patients' outcomes. CONCLUSION Our image-based subtype classification on the basis of deep learning models is a novel tool to refine risk stratification in cancers. The image subtypes detected for glioblastoma represent a promising prognostic biomarker with distinct molecular and immune characteristics and may facilitate developing novel, individualized immunotherapies for glioblastoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风筝完成签到,获得积分10
刚刚
开放访天完成签到 ,获得积分0
1秒前
00完成签到 ,获得积分10
1秒前
粒子一号完成签到,获得积分10
2秒前
7秒前
robin完成签到 ,获得积分10
9秒前
abjz完成签到,获得积分10
12秒前
浮尘完成签到 ,获得积分0
16秒前
阿怪完成签到 ,获得积分10
18秒前
weng完成签到,获得积分10
19秒前
风信子deon01完成签到,获得积分10
21秒前
sysi完成签到 ,获得积分10
23秒前
严剑封完成签到,获得积分10
24秒前
jiaaniu完成签到 ,获得积分10
25秒前
乐乐应助张阳采纳,获得10
32秒前
38秒前
liz完成签到 ,获得积分10
38秒前
cyskdsn完成签到 ,获得积分10
39秒前
张阳发布了新的文献求助10
43秒前
研友_8K2QJZ完成签到,获得积分10
46秒前
风中的向卉完成签到 ,获得积分10
47秒前
yzhilson完成签到 ,获得积分0
47秒前
渔渔完成签到 ,获得积分10
51秒前
yyy完成签到 ,获得积分10
52秒前
Jenifer完成签到 ,获得积分10
53秒前
纯情的天奇完成签到 ,获得积分10
54秒前
56秒前
naiyantang完成签到 ,获得积分10
56秒前
安静严青完成签到 ,获得积分10
1分钟前
1分钟前
fay1987完成签到,获得积分10
1分钟前
木又完成签到 ,获得积分10
1分钟前
paper reader完成签到,获得积分10
1分钟前
i2stay完成签到,获得积分10
1分钟前
不会学习的小郭完成签到 ,获得积分10
1分钟前
zzuwxj完成签到,获得积分10
1分钟前
chenxilulu完成签到,获得积分10
1分钟前
hadern完成签到,获得积分10
1分钟前
小马想毕业完成签到,获得积分10
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4411748
求助须知:如何正确求助?哪些是违规求助? 3895514
关于积分的说明 12116060
捐赠科研通 3540684
什么是DOI,文献DOI怎么找? 1943048
邀请新用户注册赠送积分活动 983699
科研通“疑难数据库(出版商)”最低求助积分说明 880178