Abstract PO-037: Machine learning-enabled transomics identifies three therapeutic targets for MYC-driven diffuse large B cell lymphoma

弥漫性大B细胞淋巴瘤 淋巴瘤 计算机科学 癌症研究 人工智能 医学 病理
作者
Simon P. Fricker,Christopher Nicholson,Samuel J. Roth,Arudhir Singh,Caitlin S. Brown,Jon Hu,Petronela Buiga,Vishnu P Kanakaveti,Anja Deutzmann,Dean W. Felsher,Samantha Dale Strasser
出处
期刊:Blood cancer discovery [American Association for Cancer Research]
卷期号:5 (3_Supplement): PO-037
标识
DOI:10.1158/2643-3249.lymphoma24-po-037
摘要

Abstract MYC activation and dysregulation is a powerful oncogenic driver in multiple cancers, including diffuse large B cell lymphoma (DLBCL). There is a known correlation between MYC expression and poor prognosis. While the 5-year overall survival for DLBCL patients on first-line therapy, R-CHOP, is approximately 75%, the 5-year overall survival drops to a staggering 30% for patients co-expressing MYC and BCL2 (double expressor lymphoma). However, it is challenging to target MYC directly. Therefore, we identified a novel approach to circumvent targeting MYC directly by leveraging Pepper’s proprietary machine learning (ML) transomic analysis platform, COMPASS, to identify novel targets associated with high MYC activity that, when inhibited, are predicted to recapitulate the effect of MYC inactivation. Specifically, COMPASS unlocks functional drivers of disease to identify novel drug targets. To study the role of MYC in lymphoma biology, we utilize a MYC-conditional T cell acute lymphoblastic leukemia/lymphoma (T-ALL) cell line (4188) with tunable MYC expression. We collect genomic, transcriptomic, proteomic, and phosphoproteomic data from samples with MYC transgene expression “on” and “off” and compare these biological cell states via COMPASS to identify novel targets that reproduce MYC inactivation. This provides new hope for patients suffering from MYC driven DLBCL. The MYC-conditional cell line allows the regulation of MYC expression via the tetracycline regulatory (Tet-Off) system. Four omic datasets were collected from each sample: genomics (next-generation sequencing, NGS), transcriptomics (NGS), proteomics (mass spectrometry), and phosphoproteomics (mass spectrometry). We employed the COMPASS target prioritization algorithm to identify and rank novel targets that mimic “turning MYC off”. Targets were then filtered to select those with an available pharmacological tool compound (PTC). The PTCs were used to evaluate the targets in the SU-DHL-06 xenograft model of DLBCL. The PTCs inhibited tumor growth from 8-91%. A total of 20 targets were tested of which 13/20 (65%) were validated as evidenced by significant inhibition of tumor growth (p<0.05, two-way ANOVA). All targets were kinases or related to kinase activity and pathways. Three of the PTCs resulted in maximum tumor growth inhibition of 86%, 89% and 91% at end of treatment, resulting in stasis of tumor growth and increased survival compared with control vehicle-treated mice. We have previously shown how the COMPASS transomics analysis approach can identify novel drug targets for drug-resistant EGFRm NSCLC and for MYC-driven hepatocellular carcinoma (HCC). The success rate of target validation across several indications including EGFRm NSCLC, HCC and lymphoma is 73%. The data presented here on MYC-driven DLBCL further validates this approach. Further validation studies will investigate novel targets using gene silencing, as PTCs were unavailable for many of the novel high-ranked targets identified in this study. Citation Format: Simon P Fricker, Christopher J Nicholson, Samuel J Roth, Arudhir Singh, Caitlin Brown, Jon Hu, Petronela Buiga, Vishnu P Kanakaveti, Anja Deutzmann, Dean Felsher, Samantha D Strasser. Machine learning-enabled transomics identifies three therapeutic targets for MYC-driven diffuse large B cell lymphoma [abstract]. In: Proceedings of the Fourth AACR International Meeting on Advances in Malignant Lymphoma: Maximizing the Basic-Translational Interface for Clinical Application; 2024 Jun 19-22; Philadelphia, PA. Philadelphia (PA): AACR; Blood Cancer Discov 2024;5(3_Suppl):Abstract nr PO-037.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助蛋花肉圆汤采纳,获得10
2秒前
tyy完成签到,获得积分10
3秒前
zyc1111111发布了新的文献求助20
5秒前
传奇3应助TANG采纳,获得10
6秒前
虚心的惮完成签到 ,获得积分10
8秒前
Flynn完成签到 ,获得积分10
11秒前
12秒前
格兰德法泽尔完成签到,获得积分10
13秒前
111完成签到,获得积分10
14秒前
99668完成签到,获得积分10
15秒前
16秒前
001发布了新的文献求助10
17秒前
zyc1111111发布了新的文献求助20
17秒前
TANG完成签到,获得积分20
17秒前
17秒前
20秒前
叶叶发布了新的文献求助10
22秒前
23秒前
25秒前
欧阳完成签到,获得积分10
25秒前
小树叶完成签到 ,获得积分10
28秒前
Angsent完成签到,获得积分10
28秒前
ghn123456789完成签到,获得积分10
28秒前
科研狗完成签到 ,获得积分10
30秒前
叶叶完成签到,获得积分10
30秒前
机会完成签到,获得积分10
31秒前
夏天不回来完成签到,获得积分10
31秒前
土豆丝完成签到 ,获得积分10
35秒前
痴情的雁易完成签到,获得积分10
37秒前
zyc1111111发布了新的文献求助20
38秒前
自由如天完成签到,获得积分10
40秒前
Yolo完成签到,获得积分10
41秒前
青牛完成签到,获得积分10
41秒前
fufufufu完成签到,获得积分10
41秒前
丢硬币的小孩完成签到,获得积分10
42秒前
111完成签到 ,获得积分10
42秒前
arya完成签到,获得积分10
43秒前
hjyylab应助科研通管家采纳,获得10
43秒前
领导范儿应助科研通管家采纳,获得30
43秒前
Ahsan应助科研通管家采纳,获得20
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308