A rolling bearing fault diagnosis method based on interactive generative feature space oversampling-based autoencoder under imbalanced data

过采样 自编码 断层(地质) 特征(语言学) 人工智能 方位(导航) 计算机科学 模式识别(心理学) 空格(标点符号) 生成语法 特征向量 深度学习 地质学 哲学 地震学 操作系统 带宽(计算) 语言学 计算机网络
作者
F Huang,Kai Zhang,Zhixuan Li,Qing Zheng,Guofu Ding,Minghang Zhao,Yuehong Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:5
标识
DOI:10.1177/14759217241248209
摘要

With the rapid development of railroads and the yearly increase in the scale of operation, the safe operation and maintenance of rail trains have become particularly important. Among them, deep learning-based bearing fault diagnosis methods have attracted more and more attention in rail train operation and maintenance. However, rail trains usually operate normally. Collecting complete fault data for deep learning model training is often difficult. Such scenarios with a large difference between the number of normal data and fault data usually affect the performance of fault diagnosis models. Here, an interactive generative feature space oversampling-based autoencoder (IGFSO-AE) is proposed to realize fault sample generation under imbalanced data. First, the original vibration signal is converted into a semantically stable amplitude–frequency signal by fast Fourier transform and input into the autoencoder; second, the order of the hidden layer space features of the autoencoder is randomly exchanged, and the interactive sample generation learning strategy trains the autoencoder; then, interpolation oversampling is used to interpolate samples in the hidden layer space where the Euclidean distance between samples is large, and is input into the decoder, the generated samples are mixed with the original samples to form a new training set, which is used to train the intelligent fault diagnosis model and output the diagnosis results. Finally, the performance of the proposed method is evaluated using the publicly available bearing dataset and the bogie-bearing fault simulation bench in our lab. The experimental results show that IGFSO-AE can generate diverse samples with incremental information and exhibits robustness and superiority in different imbalanced proportions of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助li采纳,获得10
1秒前
fuiee完成签到,获得积分10
1秒前
温梓昊发布了新的文献求助10
1秒前
酷波er应助NIkoLI采纳,获得10
2秒前
2秒前
littleE完成签到 ,获得积分10
2秒前
Jasper应助TOMORI酱采纳,获得10
5秒前
5秒前
朱祥龙完成签到,获得积分10
6秒前
Zhouxin发布了新的文献求助10
7秒前
广州城建职业技术学院完成签到,获得积分10
8秒前
memory发布了新的文献求助10
8秒前
胖头鱼666完成签到,获得积分10
8秒前
zll发布了新的文献求助50
8秒前
benyu应助jazzmantan采纳,获得10
10秒前
NIkoLI发布了新的文献求助10
11秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
优雅含莲完成签到 ,获得积分10
19秒前
Hello应助junjun采纳,获得10
21秒前
研友_VZG7GZ应助memory采纳,获得10
22秒前
xyyyy完成签到 ,获得积分10
23秒前
Bin_Liu发布了新的文献求助10
24秒前
包凡之完成签到,获得积分10
24秒前
25秒前
CTCG完成签到 ,获得积分10
29秒前
sci来完成签到,获得积分10
30秒前
研友_VZG7GZ应助小闵采纳,获得10
31秒前
七曜发布了新的文献求助10
31秒前
温梓昊完成签到,获得积分10
33秒前
京客家发布了新的文献求助10
33秒前
33秒前
陈开心完成签到,获得积分10
35秒前
酷炫的乐枫完成签到,获得积分20
36秒前
37秒前
科研通AI2S应助Abiu采纳,获得20
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779522
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220898
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668632
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522