Biosensor-Driven IoT Wearables for Accurate Body Motion Tracking and Localization

计算机科学 可穿戴计算机 惯性测量装置 人工智能 全球定位系统 活动识别 实时计算 数据挖掘 计算机视觉 模式识别(心理学) 嵌入式系统 电信
作者
Nouf Abdullah Almujally,Danyal Z. Khan,Naif Al Mudawi,Mohammed Alonazi,Abdulwahab Alazeb,Asaad Algarni,Ahmad Jalal,Hui Liu
出处
期刊:Sensors [MDPI AG]
卷期号:24 (10): 3032-3032 被引量:26
标识
DOI:10.3390/s24103032
摘要

The domain of human locomotion identification through smartphone sensors is witnessing rapid expansion within the realm of research. This domain boasts significant potential across various sectors, including healthcare, sports, security systems, home automation, and real-time location tracking. Despite the considerable volume of existing research, the greater portion of it has primarily concentrated on locomotion activities. Comparatively less emphasis has been placed on the recognition of human localization patterns. In the current study, we introduce a system by facilitating the recognition of both human physical and location-based patterns. This system utilizes the capabilities of smartphone sensors to achieve its objectives. Our goal is to develop a system that can accurately identify different human physical and localization activities, such as walking, running, jumping, indoor, and outdoor activities. To achieve this, we perform preprocessing on the raw sensor data using a Butterworth filter for inertial sensors and a Median Filter for Global Positioning System (GPS) and then applying Hamming windowing techniques to segment the filtered data. We then extract features from the raw inertial and GPS sensors and select relevant features using the variance threshold feature selection method. The extrasensory dataset exhibits an imbalanced number of samples for certain activities. To address this issue, the permutation-based data augmentation technique is employed. The augmented features are optimized using the Yeo–Johnson power transformation algorithm before being sent to a multi-layer perceptron for classification. We evaluate our system using the K-fold cross-validation technique. The datasets used in this study are the Extrasensory and Sussex Huawei Locomotion (SHL), which contain both physical and localization activities. Our experiments demonstrate that our system achieves high accuracy with 96% and 94% over Extrasensory and SHL in physical activities and 94% and 91% over Extrasensory and SHL in the location-based activities, outperforming previous state-of-the-art methods in recognizing both types of activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuwa完成签到,获得积分10
刚刚
枫桥夜泊发布了新的文献求助10
1秒前
科研通AI6应助你好采纳,获得10
1秒前
科目三应助高贵宛海采纳,获得10
1秒前
彭于晏应助高贵宛海采纳,获得10
1秒前
哩哩啦啦完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
JamesPei应助DAYTOY采纳,获得10
3秒前
Zz发布了新的文献求助10
3秒前
花花子完成签到,获得积分10
3秒前
在水一方应助小凯采纳,获得10
3秒前
hdh发布了新的文献求助10
5秒前
5秒前
所所应助萍萍采纳,获得20
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
11111111完成签到,获得积分10
8秒前
海啸完成签到,获得积分10
8秒前
Guangquan_Zhang完成签到,获得积分10
8秒前
CipherSage应助gx采纳,获得10
8秒前
张鱼嗝完成签到,获得积分10
9秒前
9秒前
枫桥夜泊完成签到,获得积分10
10秒前
卖粥的果发布了新的文献求助10
10秒前
深情安青应助松林采纳,获得100
10秒前
路边完成签到 ,获得积分10
10秒前
六月初八夜完成签到,获得积分10
11秒前
11秒前
千思发布了新的文献求助10
11秒前
英俊的铭应助晨心采纳,获得10
12秒前
13秒前
雪山飞龙发布了新的文献求助10
13秒前
仪飞冲天小女警完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321814
求助须知:如何正确求助?哪些是违规求助? 4463462
关于积分的说明 13890276
捐赠科研通 4354646
什么是DOI,文献DOI怎么找? 2391956
邀请新用户注册赠送积分活动 1385509
关于科研通互助平台的介绍 1355257