Automated Left Ventricle Segmentation in Echocardiography Using YOLO: A Deep Learning Approach for Enhanced Cardiac Function Assessment

分割 人工智能 计算机科学 计算机视觉 深度学习 卷积神经网络 图像分割 瓶颈 模式识别(心理学) 嵌入式系统
作者
M. Balasubramani,Chih‐Wei Sung,Mu‐Yang Hsieh,Edward Pei‐Chuan Huang,Jiann-Shing Shieh,Maysam Abbod
出处
期刊:Electronics [MDPI AG]
卷期号:13 (13): 2587-2587 被引量:6
标识
DOI:10.3390/electronics13132587
摘要

Accurate segmentation of the left ventricle (LV) using echocardiogram (Echo) images is essential for cardiovascular analysis. Conventional techniques are labor-intensive and exhibit inter-observer variability. Deep learning has emerged as a powerful tool for automated medical image segmentation, offering advantages in speed and potentially superior accuracy. This study explores the efficacy of employing a YOLO (You Only Look Once) segmentation model for automated LV segmentation in Echo images. YOLO, a cutting-edge object detection model, achieves exceptional speed–accuracy balance through its well-designed architecture. It utilizes efficient dilated convolutional layers and bottleneck blocks for feature extraction while incorporating innovations like path aggregation and spatial attention mechanisms. These attributes make YOLO a compelling candidate for adaptation to LV segmentation in Echo images. We posit that by fine-tuning a pre-trained YOLO-based model on a well-annotated Echo image dataset, we can leverage the model’s strengths in real-time processing and precise object localization to achieve robust LV segmentation. The proposed approach entails fine-tuning a pre-trained YOLO model on a rigorously labeled Echo image dataset. Model performance has been evaluated using established metrics such as mean Average Precision (mAP) at an Intersection over Union (IoU) threshold of 50% (mAP50) with 98.31% and across a range of IoU thresholds from 50% to 95% (mAP50:95) with 75.27%. Successful implementation of YOLO for LV segmentation has the potential to significantly expedite and standardize Echo image analysis. This advancement could translate to improved clinical decision-making and enhanced patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
华仔应助Sledge采纳,获得10
2秒前
南曦发布了新的文献求助10
2秒前
完美世界应助赫玉涛采纳,获得10
2秒前
Mic应助AYN采纳,获得30
3秒前
卡皮巴拉x完成签到 ,获得积分10
4秒前
充电宝应助眼睛大的从雪采纳,获得10
4秒前
Juvenilesy完成签到,获得积分10
5秒前
yuHS完成签到,获得积分10
5秒前
Mic应助搞怪的猕猴桃采纳,获得10
6秒前
6秒前
小蘑菇应助乔燃采纳,获得10
6秒前
今后应助Mp4采纳,获得10
7秒前
7秒前
photonss完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
shhoing应助科研通管家采纳,获得10
10秒前
斯沃特应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
wxyshare应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
wxyshare应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
wxyshare应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
wxyshare应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547632
求助须知:如何正确求助?哪些是违规求助? 4633117
关于积分的说明 14629382
捐赠科研通 4574643
什么是DOI,文献DOI怎么找? 2508462
邀请新用户注册赠送积分活动 1484914
关于科研通互助平台的介绍 1455971