已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DCAM-NET:A novel domain generalization optic cup and optic disc segmentation pipeline with multi-region and multi-scale convolution attention mechanism

计算机科学 分割 人工智能 卷积神经网络 模式识别(心理学) 一般化 特征(语言学) 特征提取 图像分割 卷积(计算机科学) 领域(数学分析) 融合机制 计算机视觉 人工神经网络 融合 数学 哲学 数学分析 脂质双层融合 语言学
作者
Kaiwen Hua,Xianjin Fang,Zhi‐Ri Tang,Ying Cheng,Zekuan Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107076-107076 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107076
摘要

Fundus images are an essential basis for diagnosing ocular diseases, and using convolutional neural networks has shown promising results in achieving accurate fundus image segmentation. However, the difference between the training data (source domain) and the testing data (target domain) will significantly affect the final segmentation performance. This paper proposes a novel framework named DCAM-NET for fundus domain generalization segmentation, which substantially improves the generalization ability of the segmentation model to the target domain data and enhances the extraction of detailed information on the source domain data. This model can effectively overcome the problem of poor model performance due to cross-domain segmentation. To enhance the adaptability of the segmentation model to target domain data, this paper proposes a multi-scale attention mechanism module (MSA) that functions at the feature extraction level. Extracting different attribute features to enter the corresponding scale attention module further captures the critical features in channel, position, and spatial regions. The MSA attention mechanism module also integrates the characteristics of the self-attention mechanism, it can capture dense context information, and the aggregation of multi-feature information effectively enhances the generalization of the model when dealing with unknown domain data. In addition, this paper proposes the multi-region weight fusion convolution module (MWFC), which is essential for the segmentation model to extract feature information from the source domain data accurately. Fusing multiple region weights and convolutional kernel weights on the image to enhance the model adaptability to information at different locations on the image, the fusion of weights deepens the capacity and depth of the model. It enhances the learning ability of the model for multiple regions on the source domain. Our experiments on fundus data for cup/disc segmentation show that the introduction of MSA and MWFC modules in this paper effectively improves the segmentation ability of the segmentation model on the unknown domain. And the performance of the proposed method is significantly better than other methods in the current domain generalization segmentation of the optic cup/disc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉翠安应助贤惠的大山采纳,获得30
2秒前
5秒前
1234发布了新的文献求助10
5秒前
小马甲应助RRC采纳,获得10
5秒前
6秒前
何1完成签到 ,获得积分10
6秒前
8秒前
9秒前
10秒前
爆米花应助sqly采纳,获得10
11秒前
11秒前
14秒前
hyf发布了新的文献求助10
15秒前
16秒前
初星完成签到,获得积分10
17秒前
上官若男应助dgqlcc采纳,获得10
18秒前
18秒前
18秒前
迅速雅阳发布了新的文献求助30
20秒前
西门长海完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
流香完成签到 ,获得积分10
21秒前
jason应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
23秒前
好好发布了新的文献求助10
24秒前
24秒前
tianchen完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522001
求助须知:如何正确求助?哪些是违规求助? 4613204
关于积分的说明 14537757
捐赠科研通 4550874
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446330