Two-view correspondence learning using graph neural network with reciprocal neighbor attention

计算机科学 人工智能 离群值 联营 图形 背景(考古学) 互惠的 模式识别(心理学) 机器学习 理论计算机科学 地理 语言学 哲学 考古
作者
Zizhuo Li,Yong Ma,Xiaoguang Mei,Jiayi Ma
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 114-124 被引量:5
标识
DOI:10.1016/j.isprsjprs.2023.05.030
摘要

Recent advances in two-view correspondence learning consider aggregating local contextual information from k-nearest neighbors by exploring local geometric extractors using convolution, graph or self-attention. However, there is no guarantee that the extracted local context is conducive to correspondence pruning, since there are typically over 90% outliers in the putative set which would inevitably result in contaminated neighbors and hence contaminated local context. To address this issue, in this paper, we propose the RNA-GNN, an attentional graph neural network (GNN) architecture, which can explicitly model interactions among relevant neighboring correspondences. Specifically, a reciprocal neighbor attention (RNA) module is designed to operate sparse attention on relevant neighbors only rather than all neighbors, mitigating the interference of irrelevant and redundant connectivity, and learning more compact and robust representation. In addition, considering that seeking reliable correspondences requires both local and global context, we introduce a context-aware attention module to extract global and channel-wise context by means of global weighted average pooling with weights that are estimated within the network, excluding outliers from this pooling. Extensive experiments on publicly available datasets demonstrate that RNA-GNN substantially advances current state-of-the-arts on camera pose estimation, homography estimation, and remote sensing image registration. Our code is publicly available at https://github.com/ZizhuoLi/RNA-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪尔蓝发布了新的文献求助10
刚刚
wtdd发布了新的文献求助10
1秒前
3秒前
4秒前
gomm完成签到,获得积分10
4秒前
所所应助ASC采纳,获得10
4秒前
帕金森完成签到,获得积分10
5秒前
852应助沉海采纳,获得10
5秒前
Jerry完成签到,获得积分10
6秒前
思源应助阿湫采纳,获得10
7秒前
清爽老九发布了新的文献求助30
10秒前
wtdd完成签到,获得积分20
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
禾子发布了新的文献求助10
15秒前
西北发布了新的文献求助10
16秒前
李健的小迷弟应助shanxing采纳,获得10
16秒前
16秒前
17秒前
17秒前
lyt完成签到 ,获得积分10
17秒前
俭朴自中完成签到 ,获得积分10
17秒前
研友_VZG7GZ应助蜂蜜采纳,获得10
17秒前
zcn完成签到,获得积分10
18秒前
少女徐必成完成签到 ,获得积分10
18秒前
18秒前
water应助zhaohuanjun采纳,获得10
19秒前
qqy发布了新的文献求助10
21秒前
ASC发布了新的文献求助10
21秒前
21秒前
22秒前
大宇完成签到 ,获得积分10
22秒前
23秒前
23秒前
蓝从发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
南宫迎松完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870623
求助须知:如何正确求助?哪些是违规求助? 3412797
关于积分的说明 10681034
捐赠科研通 3137224
什么是DOI,文献DOI怎么找? 1730697
邀请新用户注册赠送积分活动 834310
科研通“疑难数据库(出版商)”最低求助积分说明 781133