CAM-VT: A Weakly supervised cervical cancer nest image identification approach using conjugated attention mechanism and visual transformer

人工智能 计算机科学 宫颈癌 模式识别(心理学) 变压器 机器学习 医学 癌症 量子力学 物理 内科学 电压
作者
Zizhen Fan,Xiangchen Wu,Changzhong Li,Haoyuan Chen,Wanli Liu,Yu Zheng,Jing Chen,Xiaoyan Li,Hongzan Sun,Tao Jiang,Marcin Grzegorzek,Chen Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:162: 107070-107070 被引量:35
标识
DOI:10.1016/j.compbiomed.2023.107070
摘要

Cervical cancer is the fourth most common cancer among women, and cytopathological images are often used to screen for this cancer. However, manual examination is very troublesome and the misdiagnosis rate is high. In addition, cervical cancer nest cells are denser and more complex, with high overlap and opacity, increasing the difficulty of identification. The appearance of the computer aided automatic diagnosis system solves this problem. In this paper, a weakly supervised cervical cancer nest image identification approach using Conjugated Attention Mechanism and Visual Transformer (CAM-VT), which can analyze pap slides quickly and accurately. CAM-VT proposes conjugated attention mechanism and visual transformer modules for local and global feature extraction respectively, and then designs an ensemble learning module to further improve the identification capability. In order to determine a reasonable interpretation, comparative experiments are conducted on our datasets. The average accuracy of the validation set of three repeated experiments using CAM-VT framework is 88.92%, which is higher than the optimal result of 22 well-known deep learning models. Moreover, we conduct ablation experiments and extended experiments on Hematoxylin and Eosin stained gastric histopathological image datasets to verify the ability and generalization ability of the framework. Finally, the top 5 and top 10 positive probability values of cervical nests are 97.36% and 96.84%, which have important clinical and practical significance. The experimental results show that the proposed CAM-VT framework has excellent performance in potential cervical cancer nest image identification tasks for practical clinical work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
FashionBoy应助tsumugi采纳,获得10
1秒前
西瓜完成签到,获得积分10
2秒前
2秒前
凯凯发布了新的文献求助30
4秒前
4秒前
4秒前
义气的三德完成签到,获得积分10
5秒前
LLXY完成签到,获得积分10
5秒前
sx19910304发布了新的文献求助10
6秒前
li发布了新的文献求助10
6秒前
7秒前
Hello应助liu采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
加菲丰丰应助自由的念烟采纳,获得30
9秒前
今晚吃小孩完成签到,获得积分10
10秒前
11秒前
12秒前
风中从灵发布了新的文献求助10
13秒前
Migrol完成签到,获得积分10
13秒前
ssss发布了新的文献求助10
15秒前
研友_nV2Kyn完成签到,获得积分10
15秒前
Ac完成签到,获得积分10
16秒前
18秒前
Jasper应助爱科研的花花采纳,获得10
18秒前
大个应助风中从灵采纳,获得10
19秒前
tlx完成签到,获得积分10
20秒前
神勇的曼文完成签到,获得积分10
21秒前
希望天下0贩的0应助ccc采纳,获得10
23秒前
25秒前
大力出奇迹完成签到,获得积分10
25秒前
25秒前
少云六到十完成签到,获得积分10
25秒前
liam完成签到,获得积分10
26秒前
26秒前
kmzzy完成签到 ,获得积分10
26秒前
凯凯发布了新的文献求助30
26秒前
善学以致用应助bolunxier采纳,获得10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870452
求助须知:如何正确求助?哪些是违规求助? 3412639
关于积分的说明 10680272
捐赠科研通 3137063
什么是DOI,文献DOI怎么找? 1730577
邀请新用户注册赠送积分活动 834142
科研通“疑难数据库(出版商)”最低求助积分说明 781073