EEG-Based Graph Neural Network Classification of Alzheimer’s Disease: An Empirical Evaluation of Functional Connectivity Methods

脑电图 计算机科学 图形 模式识别(心理学) 人工智能 卷积神经网络 功能连接 机器学习 神经科学 心理学 理论计算机科学
作者
Dominik Klepl,Fei He,Min Wu,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2651-2660 被引量:41
标识
DOI:10.1109/tnsre.2022.3204913
摘要

Alzheimer's disease (AD) is the leading form of dementia worldwide. AD disrupts neuronal pathways and thus is commonly viewed as a network disorder. Many studies demonstrate the power of functional connectivity (FC) graph-based biomarkers for automated diagnosis of AD using electroencephalography (EEG). However, various FC measures are commonly utilised, as each aims to quantify a unique aspect of brain coupling. Graph neural networks (GNN) provide a powerful framework for learning on graphs. While a growing number of studies use GNN to classify EEG brain graphs, it is unclear which method should be utilised to estimate the brain graph. We use eight FC measures to estimate FC brain graphs from sensor-level EEG signals. GNN models are trained in order to compare the performance of the selected FC measures. Additionally, three baseline models based on literature are trained for comparison. We show that GNN models perform significantly better than the other baseline models. Moreover, using FC measures to estimate brain graphs improves the performance of GNN compared to models trained using a fixed graph based on the spatial distance between the EEG sensors. However, no FC measure performs consistently better than the other measures. The best GNN reaches 0.984 area under sensitivity-specificity curve (AUC) and 92% accuracy, whereas the best baseline model, a convolutional neural network, has 0.924 AUC and 84.7% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松元柏完成签到,获得积分10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
qiao应助科研通管家采纳,获得10
1秒前
左丘白桃应助科研通管家采纳,获得20
1秒前
1秒前
专注的溪流完成签到,获得积分10
1秒前
syhero完成签到,获得积分10
1秒前
科研通AI5应助ardejiang采纳,获得10
2秒前
tjpuzhang发布了新的文献求助10
2秒前
虚幻的玉米完成签到,获得积分10
4秒前
4秒前
DLL完成签到 ,获得积分10
5秒前
李爱国应助舟舟莉采纳,获得150
6秒前
斯文败类应助keeper王采纳,获得10
7秒前
yalin完成签到,获得积分10
7秒前
隐形曼青应助mdusty采纳,获得10
8秒前
9秒前
10秒前
文静的善若完成签到 ,获得积分20
10秒前
cdercder应助luckytuantuan采纳,获得10
10秒前
11秒前
snn完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
14秒前
rjj001022发布了新的文献求助10
14秒前
胡思乱想完成签到,获得积分10
15秒前
yy完成签到,获得积分10
15秒前
大个应助NAN采纳,获得30
15秒前
ardejiang发布了新的文献求助10
16秒前
16秒前
17秒前
坚强依云发布了新的文献求助30
18秒前
和谐诗双发布了新的文献求助10
19秒前
21秒前
chen发布了新的文献求助10
22秒前
研友_VZG7GZ应助NAN采纳,获得30
22秒前
xx发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783481
求助须知:如何正确求助?哪些是违规求助? 3328651
关于积分的说明 10238076
捐赠科研通 3043956
什么是DOI,文献DOI怎么找? 1670750
邀请新用户注册赠送积分活动 799845
科研通“疑难数据库(出版商)”最低求助积分说明 759149