Identifying ARG-carrying bacteriophages in a lake replenished by reclaimed water using deep learning techniques

基因组 生物 流动遗传元素 质粒 生物信息学 抗生素耐药性 噬菌体 温带气候 水平基因转移 基因组 抵抗性 微生物学 大肠杆菌 抗生素 基因 生态学 遗传学
作者
Donglin Wang,Jiayu Shang,Hui Lin,Jinsong Liang,Chenchen Wang,Yanni Sun,Yaohui Bai,Jiuhui Qu
出处
期刊:Water Research [Elsevier]
卷期号:248: 120859-120859 被引量:15
标识
DOI:10.1016/j.watres.2023.120859
摘要

As important mobile genetic elements, phages support the spread of antibiotic resistance genes (ARGs). Previous analyses of metaviromes or metagenome-assembled genomes (MAGs) failed to assess the extent of ARGs transferred by phages, particularly in the generation of antibiotic pathogens. Therefore, we have developed a bioinformatic pipeline that utilizes deep learning techniques to identify ARG-carrying phages and predict their hosts, with a special focus on pathogens. Using this method, we discovered that the predominant types of ARGs carried by temperate phages in a typical landscape lake, which is fully replenished by reclaimed water, were related to multidrug resistance and β-lactam antibiotics. MAGs containing virulent factors (VFs) were predicted to serve as hosts for these ARG-carrying phages, which suggests that the phages may have the potential to transfer ARGs. In silico analysis showed a significant positive correlation between temperate phages and host pathogens (R = 0.503, p < 0.001), which was later confirmed by qPCR. Interestingly, these MAGs were found to be more abundant than those containing both ARGs and VFs, especially in December and March. Seasonal variations were observed in the abundance of phages harboring ARGs (from 5.62% to 21.02%) and chromosomes harboring ARGs (from 18.01% to 30.94%). In contrast, the abundance of plasmids harboring ARGs remained unchanged. In summary, this study leverages deep learning to analyze phage-transferred ARGs and demonstrates an alternative method to track the production of potential antibiotic-resistant pathogens by metagenomics that can be extended to microbiological risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
知12完成签到 ,获得积分10
1秒前
4秒前
科研通AI2S应助魏儒蕾采纳,获得10
4秒前
6秒前
6秒前
zzh完成签到 ,获得积分10
9秒前
iedq完成签到 ,获得积分10
9秒前
CAOHOU举报博博求助涉嫌违规
9秒前
路漫漫其修远兮完成签到,获得积分10
10秒前
10秒前
12秒前
酷炫的海之完成签到,获得积分10
12秒前
大模型应助ixueyi采纳,获得10
13秒前
14秒前
15秒前
16秒前
CAOHOU举报博博求助涉嫌违规
17秒前
王红红发布了新的文献求助10
17秒前
17秒前
我是老大应助bisiwuqi采纳,获得10
17秒前
充电宝应助失眠的小熊猫采纳,获得10
19秒前
19秒前
黄寒梅发布了新的文献求助10
20秒前
L.L发布了新的文献求助10
20秒前
zm完成签到,获得积分10
22秒前
李长流发布了新的文献求助10
22秒前
22秒前
dd发布了新的文献求助10
23秒前
刘迎完成签到 ,获得积分10
24秒前
24秒前
Criminology34应助陈王采纳,获得10
24秒前
wulixin完成签到,获得积分10
24秒前
24秒前
26秒前
27秒前
隐形曼青应助zm采纳,获得10
28秒前
ixueyi发布了新的文献求助10
28秒前
29秒前
29秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380877
求助须知:如何正确求助?哪些是违规求助? 4504558
关于积分的说明 14018573
捐赠科研通 4413698
什么是DOI,文献DOI怎么找? 2424381
邀请新用户注册赠送积分活动 1417313
关于科研通互助平台的介绍 1395070