Review of vision-based defect detection research and its perspectives for printed circuit board

印刷电路板 机器视觉 目视检查 可靠性 人工智能 过程(计算) 自动光学检测 计算机科学 特征(语言学) 工程类 质量(理念) 国家(计算机科学) 工程制图 可靠性工程 电气工程 语言学 哲学 认识论 操作系统 算法
作者
Yongbing Zhou,Minghao Yuan,Jian Zhang,Guofu Ding,Shengfeng Qin
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 557-578 被引量:70
标识
DOI:10.1016/j.jmsy.2023.08.019
摘要

The quality of the printed circuit board (PCB), an essential critical connection in contemporary electronic information goods, directly influences the efficiency and dependability of products. Therefore, any PCB defect should be identified promptly and precisely to avoid a product failure while it is in use. Numerous innovative methods based on machine vision, including automatic X-ray inspection (AXI), two-dimensional automated optical inspection (2D AOI), three-dimensional automated optical inspection (3D AOI), etc., are developed and used widely in PCB defect identification. Given the rapid research development in both image and vision computing and machine learning, two research questions are rising to us: (1) what is the current state-of-the-art in this research field? (2) what are the future research and development directions? To answer these two questions, this paper first systematically reviews the PCB visual detection methods and then explores the potential development trends. Firstly, we review and summarize the state of the art in research of the image data acquisition, image processing, feature extraction and feature recognition/classification methods for PCB defect detection, and then identify the commonly used method evaluation indicators and public data sets, and the execution feedback and optimization process from both visual inspection system and manufacturing system. Third, we identify the current challenges in PCB defect detection research and propose an intelligent PCB defect visual detection approach as a future potential development trend. Finally, how to implement the future potential development trend based on technology-driven and value-driven developments is discussed for intelligent manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助100
2秒前
万雨斌发布了新的文献求助10
2秒前
超级的战斗机完成签到,获得积分10
2秒前
玖生发布了新的文献求助10
2秒前
熙熙而乐完成签到,获得积分10
2秒前
2秒前
打打应助xy采纳,获得10
3秒前
十二平均律完成签到,获得积分10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
你好呀嘻嘻完成签到 ,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Belinda完成签到 ,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
dynamy1224完成签到,获得积分10
4秒前
ding应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得100
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
我是老大应助博修采纳,获得10
5秒前
CodeCraft应助李小新采纳,获得10
6秒前
小书包完成签到,获得积分10
7秒前
7秒前
田字猫完成签到,获得积分20
7秒前
我是老大应助xbf采纳,获得30
8秒前
9秒前
FJM完成签到,获得积分10
10秒前
10秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4263030
求助须知:如何正确求助?哪些是违规求助? 3795781
关于积分的说明 11900581
捐赠科研通 3442559
什么是DOI,文献DOI怎么找? 1889019
邀请新用户注册赠送积分活动 939734
科研通“疑难数据库(出版商)”最低求助积分说明 844721