Review of vision-based defect detection research and its perspectives for printed circuit board

印刷电路板 机器视觉 目视检查 可靠性 人工智能 过程(计算) 自动光学检测 计算机科学 特征(语言学) 工程类 质量(理念) 国家(计算机科学) 工程制图 可靠性工程 电气工程 语言学 哲学 认识论 操作系统 算法
作者
Yongbing Zhou,Minghao Yuan,Jian Zhang,Guofu Ding,Shengfeng Qin
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 557-578 被引量:51
标识
DOI:10.1016/j.jmsy.2023.08.019
摘要

The quality of the printed circuit board (PCB), an essential critical connection in contemporary electronic information goods, directly influences the efficiency and dependability of products. Therefore, any PCB defect should be identified promptly and precisely to avoid a product failure while it is in use. Numerous innovative methods based on machine vision, including automatic X-ray inspection (AXI), two-dimensional automated optical inspection (2D AOI), three-dimensional automated optical inspection (3D AOI), etc., are developed and used widely in PCB defect identification. Given the rapid research development in both image and vision computing and machine learning, two research questions are rising to us: (1) what is the current state-of-the-art in this research field? (2) what are the future research and development directions? To answer these two questions, this paper first systematically reviews the PCB visual detection methods and then explores the potential development trends. Firstly, we review and summarize the state of the art in research of the image data acquisition, image processing, feature extraction and feature recognition/classification methods for PCB defect detection, and then identify the commonly used method evaluation indicators and public data sets, and the execution feedback and optimization process from both visual inspection system and manufacturing system. Third, we identify the current challenges in PCB defect detection research and propose an intelligent PCB defect visual detection approach as a future potential development trend. Finally, how to implement the future potential development trend based on technology-driven and value-driven developments is discussed for intelligent manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BBOOOOOO发布了新的文献求助10
刚刚
cccc发布了新的文献求助10
刚刚
大个应助Captain采纳,获得10
刚刚
Dicy发布了新的文献求助10
1秒前
染东发布了新的文献求助10
1秒前
2秒前
4秒前
4秒前
CipherSage应助醉酒笑红尘采纳,获得10
4秒前
秋qiu发布了新的文献求助10
5秒前
思源应助活力半凡采纳,获得10
6秒前
积极鸵鸟发布了新的文献求助10
8秒前
9秒前
廉非笑发布了新的文献求助10
9秒前
所所应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
YifanWang应助科研通管家采纳,获得20
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
烟花应助QiaoHL采纳,获得10
12秒前
牛牛关注了科研通微信公众号
13秒前
钟钟发布了新的文献求助10
14秒前
16秒前
Loik完成签到,获得积分10
16秒前
liudy完成签到,获得积分10
18秒前
Loik发布了新的文献求助10
18秒前
19秒前
21秒前
21秒前
liudy发布了新的文献求助10
22秒前
李斌关注了科研通微信公众号
22秒前
漱石发布了新的文献求助10
22秒前
bkagyin应助orchid采纳,获得10
25秒前
明理的青完成签到,获得积分10
25秒前
hyg发布了新的文献求助10
26秒前
董研发布了新的文献求助20
26秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10280990
捐赠科研通 3053122
什么是DOI,文献DOI怎么找? 1675474
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761414