亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Delete: Deep Lead Optimization Enveloped in Protein Pocket through Unified Deleting Strategies and a Structure-aware Network

铅(地质) 计算机科学 特征(语言学) 提交 人工智能 过程(计算) 计算生物学 机器学习 生物 语言学 数据库 操作系统 哲学 古生物学
作者
Haotian Zhang,Huifeng Zhao,Xujun Zhang,Qun Su,Hongyan Du,Chao Shen,Zhe Wang,Dan Li,Peichen Pan,Guangyong Chen,Yu Kang,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2308.02172
摘要

Drug discovery is a highly complicated process, and it is unfeasible to fully commit it to the recently developed molecular generation methods. Deep learning-based lead optimization takes expert knowledge as a starting point, learning from numerous historical cases about how to modify the structure for better drug-forming properties. However, compared with the more established de novo generation schemes, lead optimization is still an area that requires further exploration. Previously developed models are often limited to resolving one (or few) certain subtask(s) of lead optimization, and most of them can only generate the two-dimensional structures of molecules while disregarding the vital protein-ligand interactions based on the three-dimensional binding poses. To address these challenges, we present a novel tool for lead optimization, named Delete (Deep lead optimization enveloped in protein pocket). Our model can handle all subtasks of lead optimization involving fragment growing, linking, and replacement through a unified deleting (masking) strategy, and is aware of the intricate pocket-ligand interactions through the geometric design of networks. Statistical evaluations and case studies conducted on individual subtasks demonstrate that Delete has a significant ability to produce molecules with superior binding affinities to protein targets and reasonable drug-likeness from given fragments or atoms. This feature may assist medicinal chemists in developing not only me-too/me-better products from existing drugs but also hit-to-lead for first-in-class drugs in a highly efficient manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
33发布了新的文献求助20
8秒前
GIA完成签到,获得积分10
22秒前
29秒前
Thi发布了新的文献求助10
34秒前
菠萝酸酸完成签到 ,获得积分10
40秒前
daguan完成签到,获得积分10
1分钟前
星辰大海应助独特的秋采纳,获得10
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
离雨完成签到,获得积分20
2分钟前
shennie发布了新的文献求助10
2分钟前
2分钟前
andrele应助离雨采纳,获得10
2分钟前
2分钟前
独特的秋发布了新的文献求助10
2分钟前
sandaomi发布了新的文献求助10
2分钟前
Owen应助_ban采纳,获得10
2分钟前
2分钟前
梅者如西发布了新的文献求助10
2分钟前
传奇3应助梅者如西采纳,获得10
3分钟前
Wen929完成签到 ,获得积分10
3分钟前
魔法甜甜完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
魔法甜甜发布了新的文献求助10
3分钟前
_ban发布了新的文献求助10
3分钟前
Sep_w发布了新的文献求助10
3分钟前
烟花应助阿凝采纳,获得10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
Tuan发布了新的文献求助10
3分钟前
拉长的灵阳完成签到,获得积分10
3分钟前
3分钟前
Sep_w完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595721
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818167
捐赠科研通 4651975
什么是DOI,文献DOI怎么找? 2535586
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469764