Cell classification with worse-case boosting for intelligent cervical cancer screening

Boosting(机器学习) 分类器(UML) 概化理论 人工智能 计算机科学 机器学习 训练集 梯度升压 宫颈癌 模式识别(心理学) 医学 数学 统计 癌症 随机森林 内科学
作者
Youyi Song,Jing Zou,Kup‐Sze Choi,Baiying Lei,Jing Qin
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103014-103014
标识
DOI:10.1016/j.media.2023.103014
摘要

Cell classification underpins intelligent cervical cancer screening, a cytology examination that effectively decreases both the morbidity and mortality of cervical cancer. This task, however, is rather challenging, mainly due to the difficulty of collecting a training dataset representative sufficiently of the unseen test data, as there are wide variations of cells' appearance and shape at different cancerous statuses. This difficulty makes the classifier, though trained properly, often classify wrongly for cells that are underrepresented by the training dataset, eventually leading to a wrong screening result. To address it, we propose a new learning algorithm, called worse-case boosting, for classifiers effectively learning from under-representative datasets in cervical cell classification. The key idea is to learn more from worse-case data for which the classifier has a larger gradient norm compared to other training data, so these data are more likely to correspond to underrepresented data, by dynamically assigning them more training iterations and larger loss weights for boosting the generalizability of the classifier on underrepresented data. We achieve this idea by sampling worse-case data per the gradient norm information and then enhancing their loss values to update the classifier. We demonstrate the effectiveness of this new learning algorithm on two publicly available cervical cell classification datasets (the two largest ones to the best of our knowledge), and positive results (4% accuracy improvement) yield in the extensive experiments. The source codes are available at: https://github.com/YouyiSong/Worse-Case-Boosting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raine完成签到,获得积分10
刚刚
Lucas应助开朗的君浩采纳,获得10
刚刚
皮卡丘完成签到 ,获得积分0
2秒前
折花浅笑完成签到,获得积分10
3秒前
洪山老狗完成签到,获得积分10
4秒前
诸葛御风完成签到,获得积分10
4秒前
Akim应助IDHNAPHO采纳,获得10
4秒前
Muller完成签到,获得积分10
5秒前
6秒前
7秒前
9秒前
自然友菱完成签到,获得积分10
10秒前
rr发布了新的文献求助10
10秒前
尔信完成签到 ,获得积分10
10秒前
爆米花应助Yu采纳,获得10
11秒前
小彭友发布了新的文献求助10
11秒前
香蕉觅云应助李rrrrr采纳,获得10
12秒前
dyuguo3完成签到 ,获得积分10
13秒前
lianliyou发布了新的文献求助10
14秒前
派总完成签到,获得积分10
14秒前
John完成签到,获得积分10
16秒前
haloucheng完成签到,获得积分20
17秒前
一只大憨憨猫完成签到,获得积分10
18秒前
自信的九娘完成签到,获得积分10
18秒前
lianliyou完成签到,获得积分10
18秒前
赖雅绿完成签到,获得积分10
18秒前
SASI完成签到 ,获得积分10
20秒前
Hey完成签到 ,获得积分10
21秒前
zheshi1完成签到,获得积分10
22秒前
枫七完成签到,获得积分10
23秒前
haloucheng发布了新的文献求助10
23秒前
顾君如完成签到,获得积分10
24秒前
26秒前
rr完成签到,获得积分10
26秒前
26秒前
26秒前
英姑应助查理fofo采纳,获得30
28秒前
zyh完成签到,获得积分20
28秒前
白羊发布了新的文献求助20
29秒前
suodeheng完成签到,获得积分10
29秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825235
求助须知:如何正确求助?哪些是违规求助? 3367507
关于积分的说明 10446224
捐赠科研通 3086876
什么是DOI,文献DOI怎么找? 1698353
邀请新用户注册赠送积分活动 816713
科研通“疑难数据库(出版商)”最低求助积分说明 769937