Solvent–Solvent Interaction Mediated Lithium-Ion (De)intercalation Chemistry in Propylene Carbonate Based Electrolytes for Lithium–Sulfur Batteries

电解质 碳酸丙烯酯 插层(化学) 溶剂 化学 锂(药物) 无机化学 离子 硫黄 有机化学 物理化学 电极 医学 内分泌学
作者
Honghong Liang,Zheng Ma,Yuqi Wang,Fei Zhao,Zhen Cao,Luigi Cavallo,Qian Li,Jun Ming
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (18): 18062-18073 被引量:58
标识
DOI:10.1021/acsnano.3c04790
摘要

Reversible lithium-ion (de)intercalation in the carbon-based anodes using ethylene carbonate (EC) based electrolytes has enabled the commercialization of lithium-ion batteries, allowing them to dominate the energy storage markets for hand-held electronic devices and electric vehicles. However, this issue always fails in propylene carbonate (PC) based electrolytes due to the cointercalation of Li+-PC. Herein, we report that a reversible Li+ (de)intercalation could be achieved by tuning the solvent–solvent interaction in a PC-based electrolyte containing a fluoroether. We study the existence of such previously unknown interactions mainly by nuclear magnetic resonance (NMR) spectroscopy, while the analysis reveals positive effects on the solvation structure and desolvation process. We have found that the fluoroether solvents interact with PC via their δ–F and δ+H atoms, respectively, leading to a reduced Li+-PC solvent interaction and effective Li+ desolvation followed by a successful Li+ intercalation at the graphite anodes. We also propose an interfacial model to interpret the varied electrolyte stability by the differences in the kinetic and thermodynamic properties of the Li+-solvent and Li+-solvent-anion complexes. Compared to the conventional strategies of tuning electrolyte concentration and/or adding additives, our discovery provides an opportunity to enhance the compatibility of PC-based electrolytes with the graphite anodes, which will enable the design of high-energy density batteries (e.g., Li-S battery) with better environmental adaptabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
科研通AI5应助韩先生采纳,获得10
3秒前
5秒前
123发布了新的文献求助10
6秒前
AteeqBaloch发布了新的文献求助10
7秒前
less12323完成签到,获得积分10
7秒前
9秒前
小陈儿发布了新的文献求助10
9秒前
LIUYONG完成签到 ,获得积分10
10秒前
11秒前
qq完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
宋小雅完成签到,获得积分10
14秒前
叶白山完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
17秒前
ZhouYW应助执着静竹采纳,获得10
17秒前
imkhun1021发布了新的文献求助10
18秒前
qq发布了新的文献求助10
18秒前
18秒前
北斗完成签到,获得积分10
19秒前
zhui发布了新的文献求助10
19秒前
19秒前
豆蔻子发布了新的文献求助10
20秒前
怡然万声发布了新的文献求助50
20秒前
万老头发布了新的文献求助10
21秒前
佳佳发布了新的文献求助20
21秒前
21秒前
自觉的小蝴蝶完成签到,获得积分10
22秒前
北斗发布了新的文献求助10
22秒前
22秒前
kyJYbs发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635