Big data and supply chain resilience: role of decision-making technology

大数据 供应链 供应链管理 弹性(材料科学) 独创性 业务 结构方程建模 过程管理 知识管理 计算机科学 营销 社会学 数据挖掘 定性研究 社会科学 物理 机器学习 热力学
作者
Huimin Liu,Fuying Lu,Binyan Shi,Ying Hu,Min Li
出处
期刊:Management Decision [Emerald (MCB UP)]
卷期号:61 (9): 2792-2808 被引量:41
标识
DOI:10.1108/md-12-2021-1624
摘要

Purpose As global supply chains continue to develop, uncertainty grows and supply chains are frequently threatened with disruption. Although big data technology is being used to improve supply chain resilience, big data technology's role in human–machine collaboration is shifting between “supporters” and “substitutes.” However, big data technology's applicability in supply chain management is unclear. Choosing appropriate big data technology based on the enterprise's internal and external environments is important. Design/methodology/approach This study built a three-factor structural model of the factors “management support,” “big data technology adoption” and “supply chain resilience”. Big data technology adoption was divided into big data-assisted decision-making technology (ADT) and big data intelligent decision-making technology (IDT). A survey was conducted on more than 260 employees from supply chain departments in Chinese companies. The data were analyzed through structural equation modeling using Analyze of Moment Structures (AMOS) software. Findings The study's empirical results revealed that adopting both ADT and IDT improved supply chain resilience. The effects of both types of big data were significant in low-dynamic environments, but the effect of IDT on supply chain resilience was insignificant under high-dynamic environments. The authors also found that government support had an insignificantly effect on IDT adoption but significantly boosted ADT adoption, whereas management support factors promoted both ADT and IDT adoption. Originality/value By introducing two types of big data technology from the perspectives of the roles in human–machine collaborative decision-making, the research results provide a theoretical basis and management implications for enterprises to reduce the supply chain risk of enterprises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后的映寒完成签到,获得积分10
刚刚
酷波er应助张若愚采纳,获得10
1秒前
savior发布了新的文献求助10
1秒前
cui完成签到,获得积分10
2秒前
Chaserpan发布了新的文献求助50
3秒前
NexusExplorer应助menghan采纳,获得10
3秒前
JamesPei应助十月采纳,获得10
4秒前
wzx完成签到,获得积分10
4秒前
xu完成签到,获得积分10
4秒前
CodeCraft应助满意的笑萍采纳,获得10
4秒前
桀庚发布了新的文献求助10
4秒前
ybigwhite发布了新的文献求助10
4秒前
野猪佩奇完成签到,获得积分10
4秒前
JamesTYD发布了新的文献求助20
4秒前
香蕉觅云应助禾苗采纳,获得10
5秒前
汉堡包应助aff采纳,获得10
6秒前
HH完成签到 ,获得积分10
7秒前
拉长的橘子完成签到,获得积分20
7秒前
7秒前
cui发布了新的文献求助10
7秒前
柔弱的傲之完成签到,获得积分10
8秒前
匿蝶完成签到,获得积分20
8秒前
9秒前
大个应助emm采纳,获得10
9秒前
9秒前
10秒前
ianlaikk发布了新的文献求助10
10秒前
英俊的铭应助丰富的不惜采纳,获得10
10秒前
酷波er应助stillqq采纳,获得10
10秒前
11秒前
11秒前
端庄的以莲完成签到,获得积分20
11秒前
12秒前
antonin发布了新的文献求助10
12秒前
奋斗秋尽发布了新的文献求助10
12秒前
13秒前
李佳楠完成签到,获得积分10
13秒前
陈元元K完成签到,获得积分10
13秒前
14秒前
wzx发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848