A strategy to distinguish similar traditional Chinese medicines by liquid chromatography–mass spectrometry, electronic senses, and gas chromatography–ion mobility spectrometry: Marsdeniae tenacissimae Caulis and Paederiae scandens Caulis as examples

化学 电子鼻 色谱法 电子舌 质谱法 气相色谱-质谱法 离子迁移光谱法 线性判别分析 品味 人工智能 食品科学 计算机科学
作者
Jiawei Wang,Zhidong Pei,Yue‐Hua Chen,Siyu Li,Tian‐Min Wang,Ting‐Guo Kang,Na Li,Ya‐Mei Song,Hui‐Peng Song,Hui Zhang
出处
期刊:Phytochemical Analysis [Wiley]
被引量:6
标识
DOI:10.1002/pca.3425
摘要

Abstract Introduction Marsdeniae tenacissimae Caulis (MTC), a popular traditional Chinese medicine, has been widely used in the treatment of tumor diseases. Paederiae scandens Caulis (PSC), which is similar in appearance to MTC, is a common counterfeit product. It is difficult for traditional methods to effectively distinguish between MTC and PSC. Therefore, there is an urgent need for a rapid and accurate method to identify MTC and PSC. Objectives The aim is to distinguish between MTC and PSC by analyzing the differences in nonvolatile organic compounds (NVOCs), taste, odor, and volatile organic compounds (VOCs). Methods Liquid chromatography–mass spectrometry (LC‐MS) was utilized to analyze the NVOCs of MTC and PSC. Electronic tongue (E‐tongue) and electronic nose (E‐nose) were used to analyze their taste and odor respectively. Gas chromatography–ion mobility spectrometry (GC‐IMS) was applied to analyze VOCs. Finally, multivariate statistical analyses were conducted to further investigate the differences between MTC and PSC, including principal component analysis, orthogonal partial least squares discriminant analysis, discriminant factor analysis, and soft independent modeling of class analysis. Results The results of this study indicate that the integrated strategy of LC‐MS, E‐tongue, E‐nose, GC‐IMS, and multivariate statistical analysis can be effectively applied to distinguish between MTC and PSC. Using LC‐MS, 25 NVOCs were identified in MTC, while 18 NVOCs were identified in PSC. The major compounds in MTC are steroids, while the major compounds in PSC are iridoid glycosides. Similarly, the distinct taste difference between MTC and PSC was precisely revealed by the E‐tongue. Specifically, the pronounced bitterness in PSC was proven to stem from iridoid glycosides, whereas the bitterness evident in MTC was intimately tied to steroids. The E‐nose detected eight odor components in MTC and six in PSC, respectively. The subsequent statistical analysis uncovered notable differences in their odor profiles. GC‐IMS provided a visual representation of the differences in VOCs between MTC and PSC. The results indicated a relatively high relative content of 82 VOCs in MTC, contrasted with 32 VOCs exhibiting a similarly high relative content in PSC. Conclusion In this study, for the first time, the combined use of LC‐MS, E‐tongue, E‐nose, GC‐IMS, and multivariate statistical analysis has proven to be an effective method for distinguishing between MTC and PSC from multiple perspectives. This approach provides a valuable reference for the identification of other visually similar traditional Chinese medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尊敬的盼山关注了科研通微信公众号
刚刚
mx发布了新的文献求助10
1秒前
1秒前
2秒前
simin完成签到 ,获得积分10
2秒前
酷酷百川完成签到,获得积分20
2秒前
3秒前
午木发布了新的文献求助10
3秒前
ping完成签到 ,获得积分10
3秒前
3秒前
赵赵完成签到 ,获得积分10
3秒前
re完成签到 ,获得积分10
4秒前
住在魔仙堡的鱼完成签到 ,获得积分10
4秒前
添添发布了新的文献求助10
4秒前
GLv完成签到,获得积分10
4秒前
鲤鱼烙关注了科研通微信公众号
5秒前
5秒前
星辰大海应助TGH采纳,获得10
5秒前
keyanchong发布了新的文献求助10
5秒前
5秒前
左傲蕾发布了新的文献求助10
6秒前
一辈子科研一辈子倒霉完成签到,获得积分10
6秒前
6秒前
小二郎应助ZjieY采纳,获得10
6秒前
星辰大海应助Atalent采纳,获得10
6秒前
7秒前
tianchen完成签到 ,获得积分10
7秒前
吉吉发布了新的文献求助10
7秒前
自觉紫安完成签到,获得积分10
8秒前
周济完成签到,获得积分20
8秒前
8秒前
寻道图强应助问题多多采纳,获得30
8秒前
吱哦周完成签到,获得积分10
8秒前
科研通AI6应助何处1惹尘埃采纳,获得50
9秒前
思源应助敏家采纳,获得10
9秒前
9秒前
heavenhorse应助山月采纳,获得30
10秒前
小蘑菇应助priss111采纳,获得10
10秒前
善学以致用应助阔达的海采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427790
求助须知:如何正确求助?哪些是违规求助? 4541692
关于积分的说明 14178129
捐赠科研通 4459258
什么是DOI,文献DOI怎么找? 2445268
邀请新用户注册赠送积分活动 1436498
关于科研通互助平台的介绍 1413803