Linked Color Imaging with Artificial Intelligence Improves the Detection of Early Gastric Cancer

食管胃十二指肠镜检查 医学 癌症 人工智能 放射科 内科学 内窥镜检查 计算机科学
作者
Youshen Zhao,Osamu Dohi,Tsugitaka Ishida,Naohisa Yoshida,Tomoko Ochiai,Hiroki Mukai,Mayuko Seya,Katsuma Yamauchi,Hajime Miyazaki,Hayato Fukui,Takeshi Yasuda,N. Iwai,Ken Inoue,Yoshito Itoh,Xinkai Liu,Ruiyao Zhang,Xin Zhu
出处
期刊:Digestive Diseases [Karger Publishers]
卷期号:42 (6): 503-511 被引量:2
标识
DOI:10.1159/000540728
摘要

Introduction: Esophagogastroduodenoscopy is the most important tool to detect gastric cancer (GC). In this study, we developed a computer-aided detection (CADe) system to detect GC with white light imaging (WLI) and linked color imaging (LCI) modes and aimed to compare the performance of CADe with that of endoscopists. Methods: The system was developed based on the deep learning framework from 9,021 images in 385 patients between 2017 and 2020. A total of 116 LCI and WLI videos from 110 patients between 2017 and 2023 were used to evaluate per-case sensitivity and per-frame specificity. Results: The per-case sensitivity and per-frame specificity of CADe with a confidence level of 0.5 in detecting GC were 78.6% and 93.4% for WLI and 94.0% and 93.3% for LCI, respectively (p < 0.001). The per-case sensitivities of nonexpert endoscopists for WLI and LCI were 45.8% and 80.4%, whereas those of expert endoscopists were 66.7% and 90.6%, respectively. Regarding detectability between CADe and endoscopists, the per-case sensitivities for WLI and LCI were 78.6% and 94.0% in CADe, respectively, which were significantly higher than those for LCI in experts (90.6%, p = 0.004) and those for WLI and LCI in nonexperts (45.8% and 80.4%, respectively, p < 0.001); however, no significant difference for WLI was observed between CADe and experts (p = 0.134). Conclusions: Our CADe system showed significantly better sensitivity in detecting GC when used in LCI compared with WLI mode. Moreover, the sensitivity of CADe using LCI is significantly higher than those of expert endoscopists using LCI to detect GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Boss发布了新的文献求助10
刚刚
钟迪发布了新的文献求助10
1秒前
GY发布了新的文献求助20
1秒前
NexusExplorer应助Xin采纳,获得10
1秒前
香蕉觅云应助秦秦采纳,获得10
2秒前
李健应助会撒娇的绮兰采纳,获得10
2秒前
3秒前
3秒前
jin发布了新的文献求助10
3秒前
xiaomi完成签到,获得积分10
3秒前
3秒前
chen666完成签到,获得积分10
4秒前
4秒前
Qi齐完成签到,获得积分10
4秒前
YOLO发布了新的文献求助10
4秒前
ding应助zhaoda采纳,获得10
5秒前
伶俐访曼发布了新的文献求助10
5秒前
七月夏栀发布了新的文献求助15
6秒前
李琳完成签到,获得积分10
6秒前
谌倪发布了新的文献求助10
6秒前
感动访天完成签到,获得积分10
6秒前
7秒前
wdl关闭了wdl文献求助
7秒前
8秒前
咖啡豆完成签到 ,获得积分10
8秒前
aaaaaaaaaa完成签到 ,获得积分10
8秒前
科研通AI6应助dgd采纳,获得10
8秒前
翟小灰发布了新的文献求助10
8秒前
9秒前
远荒发布了新的文献求助10
9秒前
与枫发布了新的文献求助10
9秒前
9秒前
10秒前
丘比特应助Boss采纳,获得10
10秒前
10秒前
AAA完成签到,获得积分10
10秒前
Hello应助专一的怀绿采纳,获得10
11秒前
小蘑菇应助秦始皇采纳,获得10
11秒前
顺利毕业发布了新的文献求助10
11秒前
爱吃螃蟹的大闸蟹完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849