Privileged Knowledge State Distillation for Reinforcement Learning-based Educational Path Recommendation

强化学习 计算机科学 蒸馏 路径(计算) 国家(计算机科学) 人工智能 机器学习 算法 化学 有机化学 程序设计语言
作者
Qingyao Li,Wei Xia,Liang Yin,Jiarui Jin,Yong Yu
标识
DOI:10.1145/3637528.3671872
摘要

Educational recommendation seeks to suggest knowledge concepts that match a learner's ability, thus facilitating a personalized learning experience. In recent years, reinforcement learning (RL) methods have achieved considerable results by taking the encoding of the learner's exercise log as the state and employing an RL-based agent to make suitable recommendations. However, these approaches suffer from handling the diverse and dynamic learner's knowledge states. In this paper, we introduce the privileged feature distillation technique and propose the P rivileged K nowledge S tate D istillation (PKSD ) framework, allowing the RL agent to leverage the "actual'' knowledge state as privileged information in the state encoding to help tailor recommendations to meet individual needs. Concretely, our PKSD takes the privileged knowledge states together with the representations of the exercise log for the state representations during training. And through distillation, we transfer the ability to adapt to learners to aknowledge state adapter. During inference, theknowledge state adapter would serve as the estimated privileged knowledge states instead of the real one since it is not accessible. Considering that there are strong connections among the knowledge concepts in education, we further propose to collaborate the graph structure learning for concepts into our PKSD framework. This new approach is termed GEPKSD (Graph-Enhanced PKSD). As our method is model-agnostic, we evaluate PKSD and GEPKSD by integrating them with five different RL bases on four public simulators, respectively. Our results verify that PKSD can consistently improve the recommendation performance with various RL methods, and our GEPKSD could further enhance the effectiveness of PKSD in all the simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欧阳完成签到,获得积分10
1秒前
彭于晏应助zgy1106采纳,获得10
3秒前
鱼粥很好完成签到,获得积分10
3秒前
龚幻梦完成签到,获得积分10
4秒前
5秒前
Ning完成签到,获得积分10
6秒前
6秒前
可乐冰完成签到 ,获得积分10
7秒前
勤勤的新星完成签到 ,获得积分10
8秒前
龚幻梦发布了新的文献求助10
8秒前
reeeveb完成签到 ,获得积分10
9秒前
9秒前
进取拼搏发布了新的文献求助10
9秒前
10秒前
DrW1111完成签到,获得积分10
10秒前
晴心发布了新的文献求助10
11秒前
万能图书馆应助cherryhuang采纳,获得10
12秒前
lastmandream完成签到,获得积分20
13秒前
Lucas应助Scss采纳,获得30
13秒前
kuku应助Bigboss采纳,获得10
13秒前
英俊的铭应助小窝采纳,获得10
14秒前
熙熙沅沅发布了新的文献求助10
15秒前
CipherSage应助Ssyong采纳,获得10
18秒前
18秒前
由哎完成签到,获得积分10
19秒前
19秒前
大大泡泡糖完成签到,获得积分10
20秒前
21秒前
h胡发布了新的文献求助10
22秒前
哈哈哈完成签到 ,获得积分10
24秒前
鹤轸完成签到,获得积分10
24秒前
wxx完成签到,获得积分10
24秒前
可靠招牌发布了新的文献求助10
24秒前
万能图书馆应助bububusbu采纳,获得10
26秒前
小窝完成签到,获得积分10
27秒前
自由溪灵完成签到,获得积分10
28秒前
l玖应助晴心采纳,获得10
28秒前
追寻向松完成签到,获得积分10
29秒前
jjx1005完成签到 ,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3941217
求助须知:如何正确求助?哪些是违规求助? 3486999
关于积分的说明 11040774
捐赠科研通 3217149
什么是DOI,文献DOI怎么找? 1778138
邀请新用户注册赠送积分活动 864017
科研通“疑难数据库(出版商)”最低求助积分说明 799157