High-Precision Dichotomous Image Segmentation With Frequency and Scale Awareness

比例(比率) 人工智能 分割 计算机科学 图像(数学) 图像分割 计算机视觉 模式识别(心理学) 统计 数学 地图学 地理
作者
Qiuping Jiang,Jinguang Cheng,Zongwei Wu,Runmin Cong,Radu Timofte
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3426529
摘要

Dichotomous image segmentation (DIS) with rich fine-grained details within a single image is a challenging task. Despite the plausible results achieved by deep learning-based methods, most of them fail to segment generic objects when the boundary is cluttered with the background. In fact, the gradual decrease in feature map resolution during the encoding stage and the misleading texture clue may be the main issues. To handle these issues, we devise a novel frequency-and scale-aware deep neural network (FSANet) for high-precision DIS. The core of our proposed FSANet is twofold. First, a multimodality fusion (MF) module that integrates the information in spatial and frequency domains is adopted to enhance the representation capability of image features. Second, a collaborative scale fusion module (CSFM) which deviates from the traditional serial structures is introduced to maintain high resolution during the entire feature encoding stage. In the decoder side, we introduce hierarchical context fusion (HCF) and selective feature fusion (SFF) modules to infer the segmentation results from the output features of the CSFM module. We conduct extensive experiments on several benchmark datasets and compare our proposed method with existing state-of-the-art (SOTA) methods. The experimental results demonstrate that our FSANet achieves superior performance both qualitatively and quantitatively. The code will be made available at https://github.com/chasecjg/FSANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuanLeiZhang完成签到,获得积分10
刚刚
巅峰囚冰完成签到,获得积分10
刚刚
bobo发布了新的文献求助10
1秒前
1秒前
1秒前
小新发布了新的文献求助10
2秒前
百合骑士完成签到,获得积分20
2秒前
武雨寒发布了新的文献求助10
3秒前
wsy关注了科研通微信公众号
4秒前
4秒前
moyu完成签到,获得积分10
5秒前
七七完成签到,获得积分10
5秒前
5秒前
6秒前
Solitude完成签到,获得积分10
6秒前
taster发布了新的文献求助10
6秒前
小新完成签到 ,获得积分10
6秒前
CipherSage应助余佘采纳,获得10
7秒前
wqc2060完成签到,获得积分10
7秒前
夏简完成签到,获得积分10
8秒前
8秒前
科研通AI5应助wise111采纳,获得10
10秒前
汉堡完成签到,获得积分10
10秒前
11秒前
情怀应助许元冬采纳,获得10
13秒前
Zxj发布了新的文献求助10
13秒前
机智冬瓜完成签到,获得积分10
14秒前
14秒前
脑洞疼应助妮妮采纳,获得10
14秒前
15秒前
11222浅发布了新的文献求助10
16秒前
16秒前
18秒前
8R60d8应助诸葛藏藏采纳,获得10
19秒前
王者归来完成签到,获得积分10
20秒前
甜甜圈发布了新的文献求助10
21秒前
22秒前
23秒前
彩色觅荷发布了新的文献求助10
23秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800411
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326420
捐赠科研通 3062122
什么是DOI,文献DOI怎么找? 1680875
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572