COX‐2 Inhibitor Prediction With KNIME: A Codeless Automated Machine Learning‐Based Virtual Screening Workflow

工作流程 计算机科学 虚拟筛选 机器学习 化学 数据库 药物发现 生物化学
作者
Powsali Ghosh,Ashok Kumar,Sushil Kumar Singh
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:46 (2)
标识
DOI:10.1002/jcc.70030
摘要

Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure. In this study, we developed an automated KNIME workflow for predicting the COX-2 inhibitory potential of novel molecules by building a multi-level ensemble model constructed with five machine learning algorithms (i.e., Logistic Regression, K-Nearest Neighbors, Decision Tree, Random Forest, and Extreme Gradient Boosting) and various molecular and fingerprint descriptors (i.e., AtomPair, Avalon, MACCS, Morgan, RDKit, and Pattern). Post-applicability domain filtering, the final majority voting-based ensemble model achieved 90.0% balanced accuracy, 87.7% precision, and 86.4% recall on the external validation set. The freely accessible workflow empowers users to swiftly and effortlessly predict COX-2 inhibitors, eliminating the need for any prior knowledge in machine learning, coding, or statistical modeling, significantly broadening its accessibility. While beginners can seamlessly use the tool as is, experienced KNIME users can leverage it as a foundation to build advanced workflows, driving further research and innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crystalese完成签到,获得积分10
1秒前
1秒前
1秒前
CodeCraft应助d董采纳,获得10
2秒前
妍宝贝完成签到 ,获得积分10
3秒前
mlle完成签到,获得积分10
4秒前
5秒前
爱吃蒸蛋完成签到,获得积分10
5秒前
Yuuuu发布了新的文献求助10
7秒前
不能随便完成签到,获得积分10
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
冷咖啡离开了杯垫完成签到,获得积分10
10秒前
11秒前
珂珂发布了新的文献求助10
11秒前
皮皮怪发布了新的文献求助10
16秒前
ni发布了新的文献求助10
17秒前
研友_nvG5bZ发布了新的文献求助10
19秒前
共享精神应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
sward915应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得30
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
不安青牛应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
sward915应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
22秒前
Yuuuu完成签到,获得积分10
25秒前
芊芊完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4314308
求助须知:如何正确求助?哪些是违规求助? 3833601
关于积分的说明 11993192
捐赠科研通 3473844
什么是DOI,文献DOI怎么找? 1905019
邀请新用户注册赠送积分活动 951692
科研通“疑难数据库(出版商)”最低求助积分说明 853218