Multispectral imaging‐based detection of apple bruises using segmentation network and classification model

瘀伤 人工智能 计算机科学 模式识别(心理学) 多光谱图像 分割 预处理器 计算机视觉 数学 医学 外科
作者
Yanru Fang,Hongyi Bai,Laijun Sun,Jingli Hou,Yuhang Che
出处
期刊:Journal of Food Science [Wiley]
卷期号:90 (1)
标识
DOI:10.1111/1750-3841.70003
摘要

Abstract Bruises can affect the appearance and nutritional value of apples and cause economic losses. Therefore, the accurate detection of bruise levels and bruise time of apples is crucial. In this paper, we proposed a method that combines a self‐designed multispectral imaging system with deep learning to accurately detect the level and time of bruising on apples. To enhance the accuracy of extracting bruised regions with subtle features and irregular edges, an improved DeepLabV3+ was proposed. More specifically, depthwise separable convolution and efficient channel attention were employed, and the loss function was replaced with a focal loss. With these improvements, DeepLabV3+ achieved the maximum intersection over union of 95.5% and 91.0% for segmenting bruises on two types of apples in the test set, as well as maximum F 1‐ score of 97.5% and 95.2%. In addition, the spectral data of the bruised regions were extracted. After spectral preprocessing, EfficientNetV2, DenseNet121, and ShuffleNetV2 were utilized to identify the bruise levels and times and DenseNet121 exhibited the best performance. To improve the identification accuracy, an improved DenseNet121 was proposed. The learning rate was adjusted using the cosine annealing algorithm, and squeeze‐and‐excitation attention mechanism and the Gaussian error linear unit activation function were utilized. Test set results demonstrated that the accuracies of the bruising levels were 99.5% and 99.1%, and those of the bruise time were 99.0% and 99.3%, respectively. This provides a new method for detecting bruise levels and bruised time on apples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锐克5完成签到,获得积分20
1秒前
小马甲应助正直的大白采纳,获得10
1秒前
Wu完成签到 ,获得积分10
1秒前
白石杏完成签到,获得积分10
1秒前
以玉名诗完成签到,获得积分10
2秒前
3秒前
karyoter完成签到,获得积分10
3秒前
Lee完成签到,获得积分10
3秒前
diandian1108完成签到,获得积分10
3秒前
3秒前
烟花应助比尔格采纳,获得10
3秒前
ZHEN完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
领导范儿应助T拐拐采纳,获得10
4秒前
Owen应助Microgan采纳,获得30
4秒前
5秒前
天天快乐应助小王小王采纳,获得10
6秒前
莫娜完成签到,获得积分10
6秒前
6秒前
大虫发布了新的文献求助10
7秒前
研友_Z33EGZ发布了新的文献求助50
7秒前
ZS发布了新的文献求助10
7秒前
fdkufghkd完成签到,获得积分10
8秒前
8秒前
大佬发布了新的文献求助10
8秒前
jianglili完成签到,获得积分10
9秒前
意志所向完成签到,获得积分10
9秒前
10秒前
乐乐应助我在青年湖旁采纳,获得10
10秒前
10秒前
11秒前
彭于彦祖应助fan采纳,获得30
11秒前
852应助Umar采纳,获得10
11秒前
彭于晏应助公司账号2采纳,获得10
12秒前
共享精神应助执着从灵采纳,获得10
12秒前
mumuaidafu完成签到,获得积分10
12秒前
Toungoo完成签到,获得积分10
12秒前
何嘉辰发布了新的文献求助10
13秒前
大傻春发布了新的文献求助10
13秒前
KWang应助陌路孤星采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914428
求助须知:如何正确求助?哪些是违规求助? 3459916
关于积分的说明 10908187
捐赠科研通 3186389
什么是DOI,文献DOI怎么找? 1761432
邀请新用户注册赠送积分活动 852023
科研通“疑难数据库(出版商)”最低求助积分说明 793140