FedBCD: Federated Ultrasound Video and Image Joint Learning for Breast Cancer Diagnosis

接头(建筑物) 计算机科学 乳腺癌 计算机视觉 人工智能 超声波 放射科 超声成像 医学物理学 医学 癌症 内科学 建筑工程 工程类
作者
Tianpeng Deng,Chunwang Huang,Ming Cai,Yu Liu,Min Liu,Jiatai Lin,Zhenwei Shi,Bingchao Zhao,Jingqi Huang,Changhong Liang,Guoqiang Han,Zaiyi Liu,Ying Wang,Chu Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (6): 2395-2407 被引量:1
标识
DOI:10.1109/tmi.2025.3532474
摘要

Ultrasonography plays an essential role in breast cancer diagnosis. Current deep learning based studies train the models on either images or videos in a centralized learning manner, lacking consideration of joint benefits between two different modality models or the privacy issue of data centralization. In this study, we propose the first decentralized learning solution for joint learning with breast ultrasound video and image, called FedBCD. To enable the model to learn from images and videos simultaneously and seamlessly in client-level local training, we propose a Joint Ultrasound Video and Image Learning (JUVIL) model to bridge the dimension gap between video and image data by incorporating temporal and spatial adapters. The parameter-efficient design of JUVIL with trainable adapters and frozen backbone further reduces the computational cost and communication burden of federated learning, finally improving the overall efficiency. Moreover, considering conventional model-wise aggregation may lead to unstable federated training due to different modalities, data capacities in different clients, and different functionalities across layers. We further propose a Fisher information matrix (FIM) guided Layer-wise Aggregation method named FILA. By measuring layer-wise sensitivity with FIM, FILA assigns higher contributions to the clients with lower sensitivity, improving personalized performance during federated training. Extensive experiments on three image clients and one video client demonstrate the benefits of joint learning architecture, especially for the ones with small-scale data. FedBCD significantly outperforms nine federated learning methods on both video-based and image-based diagnoses, demonstrating the superiority and potential for clinical practice. Code is released at https://github.com/tianpeng-deng/FedBCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
拉呀发布了新的文献求助10
1秒前
1秒前
好好学习完成签到,获得积分10
1秒前
11112321321完成签到 ,获得积分10
2秒前
wanci应助神勇雅蕊采纳,获得10
2秒前
leyi发布了新的文献求助10
2秒前
2秒前
starrism发布了新的文献求助10
2秒前
虫二发布了新的文献求助10
3秒前
炝拌维C发布了新的文献求助10
3秒前
YBHTLLLL关注了科研通微信公众号
3秒前
3秒前
4秒前
4秒前
4秒前
长期素食完成签到,获得积分10
4秒前
小赵完成签到,获得积分10
4秒前
打打应助猫咪老师超nice采纳,获得10
4秒前
allzzwell完成签到 ,获得积分10
6秒前
Haha发布了新的文献求助10
6秒前
6秒前
满意往事发布了新的文献求助10
7秒前
无花果应助廖紊采纳,获得10
7秒前
7秒前
7秒前
默默善愁发布了新的文献求助10
7秒前
虚心的清发布了新的文献求助10
8秒前
9秒前
勤奋的静竹完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
yt发布了新的文献求助10
11秒前
PLZZQ完成签到,获得积分20
11秒前
Mic应助ruirui_love采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839