China's annual forest age dataset at 30 m spatial resolution from 1986 to 2022

中国 地理 分辨率(逻辑) 林业 地图学 计算机科学 考古 人工智能
作者
Rong Shang,Xudong Lin,Jing M. Chen,Yunjian Liang,Keyan Fang,Mingzhu Xu,Yulin Yan,Weimin Ju,Guirui Yu,Nianpeng He,Li Xu,Liangyun Liu,Jing Li,Li Wang,Jun Zhai,Zhongmin Hu
标识
DOI:10.5194/essd-2024-574
摘要

Abstract. Forest age is crucial for both carbon cycle modelling and effective forest management. Remote sensing provides crucial data for large-scale forest age mapping, but existing products often suffer from low spatial resolutions (typically 1,000 m), making them unsuitable for most forest stands in China, which are generally smaller than this threshold. Recent studies generated static forest age products for 2019 (CAFA V1.0) (Shang et al., 2023a) and 2020 (Cheng et al., 2024) at a 30-m spatial resolution. However, their low temporal resolution limits their applicability for tracking multi-year forest carbon changes. This study aims to generate China’s annual forest age dataset (CAFA V2.0) at a 30-m resolution from 1986 to 2022, utilizing forest disturbance monitoring and machine learning techniques. Forest disturbance monitoring, which typically has lower uncertainty compared to machine learning approaches, is primarily employed to update annual forest age. The modified COLD (mCOLD) algorithm, which incorporates spatial information and bidirectional monitoring, was used for forest disturbance monitoring. For undisturbed forests, forest age was estimated using machine learning models trained separately for different regions and forest cover types, with inputs including forest height, vegetation indices, climate, terrain, and soil data. Additionally, adjustments were made for underestimations in the Northeast and Southwest regions identified in CAFA V1.0 using additional reference age samples and region-specific and forest type-specific models. Validation, using a randomly selected 30 % of two reference datasets, indicated that the mapped age of disturbed forest exhibited a small error of ±2.48 years, while the mapped age of undisturbed forest from 1986 to 2022 had a larger error of ±7.91 years. The generated 30 m annual forest age dataset can facilitate forest carbon cycle modelling in China, offering valuable insights for national forest management practices. The CAFA V2.0 dataset is publicly available at https://doi.org/10.6084/m9.figshare.24464170 (Shang et al., 2023b).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyb发布了新的文献求助10
2秒前
烨枫晨曦完成签到,获得积分10
4秒前
wangli发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
哇达西哇发布了新的文献求助10
9秒前
琉璃发布了新的文献求助10
10秒前
笨笨颦应助啥都不会采纳,获得10
13秒前
笨笨颦应助啥都不会采纳,获得10
13秒前
情怀应助啥都不会采纳,获得10
13秒前
enen完成签到 ,获得积分20
14秒前
阿氏之光发布了新的文献求助10
15秒前
研友_yLpYkn完成签到,获得积分10
16秒前
日川冈坂完成签到 ,获得积分10
16秒前
enen关注了科研通微信公众号
18秒前
量子星尘发布了新的文献求助10
21秒前
田様应助wangli采纳,获得10
22秒前
24秒前
25秒前
共享精神应助ppapppap采纳,获得10
25秒前
25秒前
隐形曼青应助小李采纳,获得10
26秒前
26秒前
27秒前
akscns完成签到,获得积分10
29秒前
哈哈哈发布了新的文献求助10
30秒前
小猪发布了新的文献求助30
30秒前
852应助苹果采纳,获得10
30秒前
小馒头发布了新的文献求助10
30秒前
无花果应助小猪爱科研采纳,获得10
31秒前
xiemin发布了新的文献求助30
31秒前
笨笨颦应助大叉烧采纳,获得10
32秒前
34秒前
35秒前
35秒前
36秒前
zhangxiaopan发布了新的文献求助10
36秒前
桐桐应助selena采纳,获得10
37秒前
wu完成签到 ,获得积分10
38秒前
高分求助中
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
War and Peace in the Borderlands of Myanmar: The Kachin Ceasefire, 1994-2011 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4140929
求助须知:如何正确求助?哪些是违规求助? 3677457
关于积分的说明 11624321
捐赠科研通 3371392
什么是DOI,文献DOI怎么找? 1851957
邀请新用户注册赠送积分活动 914854
科研通“疑难数据库(出版商)”最低求助积分说明 829520