A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data

计算机科学 人工神经网络 机器学习 人工智能 网络拓扑 图形 可控性 数据挖掘 数学 理论计算机科学 应用数学 操作系统
作者
Yuxuan He,Huai Su,Enrico Zio,Shiliang Peng,Lin Fan,Zhaoming Yang,Zhe Yang,Jinjun Zhang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:237: 109333-109333 被引量:42
标识
DOI:10.1016/j.ress.2023.109333
摘要

Data-driven models, especially deep learning models, are proposed for remaining useful life (RUL) estimation with multisensor signals. Various treatments to reduce data sensitivity, addressing the difficulty of learning dynamic topologies, and coping with the lack of engineering physics guidance for model training limit the performance of these models and their use. This study proposes a systematic method to estimate RUL with multisensory data under dynamic operating conditions and multiple failure modes. Firstly, ARMA regression is introduced into the graph convolutional network(GCN) model. This allows the information loss in the GCN model following training to be lifted with low computational complexity. Secondly, the physics equations of balancing for economy and security in preventive maintenance policies is introduced in the loss function for training. This involves in a way to impose a higher penalty on delayed predictions, so to focus the neural network training on the control of high-risk situations. Finally, the method is validated on the popular C-MAPSS dataset. Compared with other cutting-edge methods, the proposed method can ensure high-fitting accuracy with strong security. In practice, the controllability and flexibility of deep learning models are enhanced, ensuring the reduction of high-risk, uncertain situations while sacrificing as little accuracy as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助Mireyi采纳,获得10
2秒前
友好的小鸽子应助chenanqi采纳,获得10
2秒前
kikilovestudying完成签到,获得积分10
2秒前
2秒前
hong完成签到,获得积分10
2秒前
酷炫的傲芙完成签到,获得积分20
2秒前
爱吃鸡蛋完成签到,获得积分10
3秒前
3秒前
刘倩完成签到 ,获得积分10
4秒前
123完成签到,获得积分10
4秒前
5秒前
5秒前
阳光的初瑶完成签到,获得积分10
6秒前
tcheng发布了新的文献求助10
7秒前
科目三应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
sevenhill应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Harry应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
归海凡儿完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
Harry应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
frozensun应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539566
求助须知:如何正确求助?哪些是违规求助? 4626342
关于积分的说明 14598842
捐赠科研通 4567196
什么是DOI,文献DOI怎么找? 2503936
邀请新用户注册赠送积分活动 1481656
关于科研通互助平台的介绍 1453312