A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data

计算机科学 人工神经网络 机器学习 人工智能 网络拓扑 图形 可控性 数据挖掘 数学 理论计算机科学 应用数学 操作系统
作者
Yuxuan He,Huai Su,Enrico Zio,Shiliang Peng,Lin Fan,Zhaoming Yang,Zhe Yang,Jinjun Zhang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:237: 109333-109333 被引量:20
标识
DOI:10.1016/j.ress.2023.109333
摘要

Data-driven models, especially deep learning models, are proposed for remaining useful life (RUL) estimation with multisensor signals. Various treatments to reduce data sensitivity, addressing the difficulty of learning dynamic topologies, and coping with the lack of engineering physics guidance for model training limit the performance of these models and their use. This study proposes a systematic method to estimate RUL with multisensory data under dynamic operating conditions and multiple failure modes. Firstly, ARMA regression is introduced into the graph convolutional network(GCN) model. This allows the information loss in the GCN model following training to be lifted with low computational complexity. Secondly, the physics equations of balancing for economy and security in preventive maintenance policies is introduced in the loss function for training. This involves in a way to impose a higher penalty on delayed predictions, so to focus the neural network training on the control of high-risk situations. Finally, the method is validated on the popular C-MAPSS dataset. Compared with other cutting-edge methods, the proposed method can ensure high-fitting accuracy with strong security. In practice, the controllability and flexibility of deep learning models are enhanced, ensuring the reduction of high-risk, uncertain situations while sacrificing as little accuracy as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
刚刚
二十发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
back you up应助科研通管家采纳,获得30
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
好好好好完成签到 ,获得积分10
2秒前
orixero应助626采纳,获得10
3秒前
Ava应助xiaoxiao采纳,获得10
3秒前
4秒前
旦旦旦旦旦旦完成签到,获得积分10
4秒前
夏一苒完成签到,获得积分20
4秒前
星星点灯完成签到,获得积分10
4秒前
英俊的铭应助天才幸运鱼采纳,获得10
5秒前
有终完成签到 ,获得积分10
5秒前
东华发布了新的文献求助10
5秒前
赛因斯完成签到,获得积分10
5秒前
8秒前
安妮完成签到 ,获得积分10
8秒前
搬砖的冰美式完成签到,获得积分10
12秒前
cassie完成签到 ,获得积分10
12秒前
小二郎应助IleraYoung采纳,获得10
13秒前
16秒前
二十完成签到 ,获得积分10
18秒前
wangyaofeng完成签到,获得积分10
18秒前
void科学家完成签到,获得积分10
18秒前
21秒前
22秒前
njxndnajoasndlas完成签到,获得积分20
23秒前
24秒前
snowwwwwwwwfox完成签到,获得积分10
24秒前
皇甫飞扬完成签到,获得积分10
24秒前
26秒前
登山人发布了新的文献求助10
27秒前
皇甫飞扬发布了新的文献求助10
27秒前
enshun发布了新的文献求助10
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742