亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 3449: Is AI-enhanced breast ultrasound ready for breast cancer screening in low-resource environments? A systematic review

医学 乳腺癌 癌症 肿瘤科 妇科 内科学
作者
Arianna Bunnell,Dustin Valdez,Fredrik Strand,Yannik Glaser,Peter Sadowski,John Shepherd
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3449-3449
标识
DOI:10.1158/1538-7445.am2024-3449
摘要

Abstract Purpose. Screening mammography is unavailable in many low-resource areas. We ask if the state-of-the-art in artificial intelligence (AI)-enhanced breast ultrasound (BUS) is sufficiently accurate to be used for primary breast cancer screening in low-resource regions. Background. Since the 1980s, high-income countries have implemented mammographic screening programs, leading to breast cancer mortality reduction in screened women.1 Mammography is unavailable in many low-resource regions, such as the USAPI. Furthermore, travel difficulties and lack of radiologists hinder implementation. AI combined with portable BUS may address limitations of the high-income paradigm. In this systematic review, we ask if AI-enhanced BUS can detect/segment lesions (Objective 1) and classify lesions as cancerous (Objective 2). Methods. Two reviewers independently assessed articles from 1/1/2016 to 8/6/2023 from PubMed, Google Scholar, and citation searching. Studies which report on AI development and report performance on a patient-wise, held-out test set met the inclusion criteria. Studies were characterized by AI task and clinical application time. Dataset composition and performance were examined via narrative data synthesis. QUADAS-2 bias assessment was performed using criteria for each AI task. Success in (2) is defined by meeting minimum screening performance guidelines.2,3 Results. PubMed yielded 281 studies, Google Scholar yielded 225 studies, and a manual citation search yielded 41 studies. From 382 unique full texts evaluated, 52 articles met all inclusion criteria: 3 frame selection, 2 real-time detection, 2 combination, 14 segmentation-only, and 31 classification-only. Lesion segmentation-only models achieved a 90th percentile Dice similarity coefficient of 0.913 on generally small datasets. The best evidence for lesion cancer classification reported 0.976 area under the curve. All studies faced elevated bias and applicability concerns under QUADAS-2. Conclusion. Reported performance for (1) is insufficient to introduce AI-enhanced BUS for breast cancer screening. Evidence supporting AI-enhanced BUS for (2) is dependent on few studies relying on internal datasets, limiting generalizability. Geographically diverse clinical trials are needed to confirm and improve robustness of performance of AI-enhanced BUS for (1) and (2). References. 1. Marmot MG, et al. The benefits and harms of breast cancer screening: an independent review. British journal of cancer. 2013;108(11):2205-2240. 2. Lehman CD, et al. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiology. 2017-04-01 2017;283(1):49-58. doi:10.1148/radiol.2016161174 3. Rosenberg RD, et al. Performance Benchmarks for Screening Mammography. Radiology. 2006-10-01 2006;241(1):55-66. doi:10.1148/radiol.2411051504 Citation Format: Arianna Bunnell, Dustin Valdez, Fredrik Strand, Yannik Glaser, Peter Sadowski, John A. Shepherd. Is AI-enhanced breast ultrasound ready for breast cancer screening in low-resource environments? A systematic review [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3449.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
semon发布了新的文献求助10
9秒前
xsyyds发布了新的文献求助10
14秒前
冷傲的夜香给冷傲的夜香的求助进行了留言
20秒前
怕黑面包完成签到 ,获得积分10
22秒前
semon完成签到,获得积分10
26秒前
时势造英雄完成签到 ,获得积分10
27秒前
Orange应助terry采纳,获得10
28秒前
Lshyong完成签到 ,获得积分10
30秒前
邵硕完成签到,获得积分20
30秒前
许三问完成签到 ,获得积分0
34秒前
xsyyds关注了科研通微信公众号
41秒前
44秒前
李爱国应助科研通管家采纳,获得10
56秒前
科目三应助科研通管家采纳,获得10
56秒前
丘比特应助科研通管家采纳,获得10
56秒前
我是老大应助科研通管家采纳,获得10
56秒前
56秒前
浮游应助科研通管家采纳,获得10
56秒前
胡菲诺完成签到,获得积分20
1分钟前
ccc完成签到 ,获得积分10
1分钟前
1分钟前
Ye发布了新的文献求助10
1分钟前
小璐小璐要幸福完成签到 ,获得积分10
1分钟前
SciGPT应助Ye采纳,获得10
1分钟前
lalala完成签到,获得积分10
1分钟前
1分钟前
sxmt123456789发布了新的文献求助10
2分钟前
2分钟前
2分钟前
sxmt123456789完成签到,获得积分10
2分钟前
好文章快快来完成签到,获得积分10
2分钟前
欣欣完成签到 ,获得积分10
2分钟前
文静幼荷完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
GPTea应助科研通管家采纳,获得20
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291307
求助须知:如何正确求助?哪些是违规求助? 4442383
关于积分的说明 13829754
捐赠科研通 4325381
什么是DOI,文献DOI怎么找? 2374155
邀请新用户注册赠送积分活动 1369503
关于科研通互助平台的介绍 1333700