Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods

计算机科学 特征选择 计算科学与工程 特征(语言学) 选择(遗传算法) 价值(数学) 数据科学 人工智能 机器学习 哲学 语言学
作者
Huanjing Wang,Qianxin Liang,John Hancock,Taghi M. Khoshgoftaar
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:11 (1) 被引量:35
标识
DOI:10.1186/s40537-024-00905-w
摘要

Abstract In the context of high-dimensional credit card fraud data, researchers and practitioners commonly utilize feature selection techniques to enhance the performance of fraud detection models. This study presents a comparison in model performance using the most important features selected by SHAP (SHapley Additive exPlanations) values and the model’s built-in feature importance list. Both methods rank features and choose the most significant ones for model assessment. To evaluate the effectiveness of these feature selection techniques, classification models are built using five classifiers: XGBoost, Decision Tree, CatBoost, Extremely Randomized Trees, and Random Forest. The Area under the Precision-Recall Curve (AUPRC) serves as the evaluation metric. All experiments are executed on the Kaggle Credit Card Fraud Detection Dataset. The experimental outcomes and statistical tests indicate that feature selection methods based on importance values outperform those based on SHAP values across classifiers and various feature subset sizes. For models trained on larger datasets, it is recommended to use the model’s built-in feature importance list as the primary feature selection method over SHAP. This suggestion is based on the rationale that computing SHAP feature importance is a distinct activity, while models naturally provide built-in feature importance as part of the training process, requiring no additional effort. Consequently, opting for the model’s built-in feature importance list can offer a more efficient and practical approach for larger datasets and more intricate models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tianliyan发布了新的文献求助10
1秒前
1秒前
wdccx发布了新的文献求助10
1秒前
星辰大海应助小竹子采纳,获得10
2秒前
pluto应助追寻白亦采纳,获得10
2秒前
粟邵发布了新的文献求助10
3秒前
Ted完成签到,获得积分10
3秒前
pzh发布了新的文献求助10
3秒前
4秒前
4秒前
Hello应助顺利凌文采纳,获得10
5秒前
东方严青发布了新的文献求助10
5秒前
7秒前
看不完的文献完成签到,获得积分10
7秒前
8秒前
十一完成签到,获得积分10
8秒前
峇蘭完成签到 ,获得积分10
8秒前
cookie完成签到,获得积分10
8秒前
bkagyin应助顺利凌文采纳,获得10
9秒前
11完成签到,获得积分10
9秒前
快帮我找找完成签到,获得积分10
9秒前
郭宇发布了新的文献求助10
9秒前
Jasper应助ACKMAN采纳,获得10
9秒前
英俊的铭应助小陈采纳,获得10
10秒前
希望天下0贩的0应助HF采纳,获得10
10秒前
橙子abcy完成签到,获得积分10
11秒前
11秒前
小竹子完成签到 ,获得积分10
12秒前
12秒前
遇安发布了新的文献求助10
12秒前
13秒前
黄嘉慧完成签到 ,获得积分10
13秒前
粟邵完成签到,获得积分10
13秒前
14秒前
繁荣的立果完成签到,获得积分10
14秒前
pzh关闭了pzh文献求助
14秒前
duo发布了新的文献求助10
15秒前
15秒前
所所应助伯赏满天采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809336
求助须知:如何正确求助?哪些是违规求助? 3353975
关于积分的说明 10368046
捐赠科研通 3070223
什么是DOI,文献DOI怎么找? 1686108
邀请新用户注册赠送积分活动 810813
科研通“疑难数据库(出版商)”最低求助积分说明 766384