Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods

计算机科学 特征选择 计算科学与工程 特征(语言学) 选择(遗传算法) 价值(数学) 数据科学 人工智能 机器学习 语言学 哲学
作者
Huanjing Wang,Qianxin Liang,John Hancock,Taghi M. Khoshgoftaar
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:11 (1) 被引量:35
标识
DOI:10.1186/s40537-024-00905-w
摘要

Abstract In the context of high-dimensional credit card fraud data, researchers and practitioners commonly utilize feature selection techniques to enhance the performance of fraud detection models. This study presents a comparison in model performance using the most important features selected by SHAP (SHapley Additive exPlanations) values and the model’s built-in feature importance list. Both methods rank features and choose the most significant ones for model assessment. To evaluate the effectiveness of these feature selection techniques, classification models are built using five classifiers: XGBoost, Decision Tree, CatBoost, Extremely Randomized Trees, and Random Forest. The Area under the Precision-Recall Curve (AUPRC) serves as the evaluation metric. All experiments are executed on the Kaggle Credit Card Fraud Detection Dataset. The experimental outcomes and statistical tests indicate that feature selection methods based on importance values outperform those based on SHAP values across classifiers and various feature subset sizes. For models trained on larger datasets, it is recommended to use the model’s built-in feature importance list as the primary feature selection method over SHAP. This suggestion is based on the rationale that computing SHAP feature importance is a distinct activity, while models naturally provide built-in feature importance as part of the training process, requiring no additional effort. Consequently, opting for the model’s built-in feature importance list can offer a more efficient and practical approach for larger datasets and more intricate models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助占臻采纳,获得10
刚刚
刚刚
junjie发布了新的文献求助10
1秒前
2秒前
苍露发布了新的文献求助10
3秒前
陈秋发布了新的文献求助10
3秒前
Ethan完成签到,获得积分10
5秒前
Song发布了新的文献求助10
5秒前
KONG完成签到,获得积分10
5秒前
朝槿发布了新的文献求助30
6秒前
科研通AI5应助幸福大白采纳,获得10
6秒前
科研通AI5应助幸福大白采纳,获得10
6秒前
科研通AI6应助幸福大白采纳,获得10
6秒前
科研通AI5应助幸福大白采纳,获得10
6秒前
科研通AI5应助幸福大白采纳,获得10
6秒前
科研通AI5应助幸福大白采纳,获得10
6秒前
7秒前
欣慰藏今完成签到,获得积分10
7秒前
7秒前
机灵白桃完成签到,获得积分20
8秒前
9秒前
9秒前
10秒前
英姑应助贪玩犀牛采纳,获得10
11秒前
Carpe发布了新的文献求助10
11秒前
11秒前
1461644768发布了新的文献求助10
12秒前
13秒前
13秒前
kk完成签到,获得积分10
15秒前
wy.he应助孟繁荣采纳,获得10
15秒前
16秒前
CodeCraft应助江鑫楷采纳,获得10
16秒前
英吉利25发布了新的文献求助10
16秒前
华仔应助小郑采纳,获得10
17秒前
17秒前
yin发布了新的文献求助10
17秒前
雨0926应助Ajkxkyt采纳,获得30
17秒前
CodeCraft应助BIGDEEK采纳,获得10
18秒前
涂惠芳发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
ACI SPEC 351.4 : 2024 Cementitious Grout Installation between Foundations and Equipment Bases—Specification 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819865
求助须知:如何正确求助?哪些是违规求助? 4128625
关于积分的说明 12777012
捐赠科研通 3868195
什么是DOI,文献DOI怎么找? 2128688
邀请新用户注册赠送积分活动 1149390
关于科研通互助平台的介绍 1045277